A new approach to treating peanut and other food allergies

May 14, 2014
A new approach to treating peanut and other food allergies

These days, more and more people seem to have food allergies, which can sometimes have life-threatening consequences. In ACS' Journal of Agricultural and Food Chemistry, scientists report the development of a new type of flour that someday could be used in food-based therapies to help people better tolerate their allergy triggers, including peanuts.

Mary Ann Lila and colleagues note that of the 170 foods that cause allergic reactions, peanuts can be the most dangerous. These reactions can range from mild itching and hives to life-threatening anaphylactic shock, in which a person's throat swells, making it difficult or impossible to breathe. An experimental treatment that involves giving minute quantities of the trigger food to patients over a period of time in a clinic is successful for some patients who are allergic to peanuts. The process, called desensitization, sets off beneficial responses by the body to the food. But the milled roasted peanut flour that is currently used can have severe side effects. Lila's team set out to design a new type of flour that could help control food allergies without causing dangerous side effects.

They turned to plant polyphenols, which have shown promise as compounds that can dampen . The scientists developed a modified flour powder in which cranberry polyphenols were bound to peanut proteins. With this extra cargo, the peanut-containing powder triggered the beneficial desensitization reactions, without provoking harmful allergic responses in laboratory tests with mice. The scientists note that the technique could also be adapted for other allergies.

Explore further: Researchers make progress toward treatment for dangerous allergies

More information: "Novel Strategy To Create Hypoallergenic Peanut Protein-Polyphenol Edible Matrices for Oral Immunotherapy" J. Agric. Food Chem., Article ASAP. DOI: 10.1021/jf405773b

Abstract
Peanut allergy is an IgE-mediated hypersensitivity. Upon peanut consumption by an allergic individual, epitopes on peanut proteins bind and cross-link peanut-specific IgE on mast cell and basophil surfaces triggering the cells to release inflammatory mediators responsible for allergic reactions. Polyphenolic phytochemicals have high affinity to bind proteins and form soluble and insoluble complexes with unique functionality. This study investigated the allergenicity of polyphenol-fortified peanut matrices prepared by complexing various polyphenol-rich plant juices and extracts with peanut flour. Polyphenol-fortified peanut matrices reduced IgE binding to one or more peanut allergens (Ara h 1, Ara h 2, Ara h 3, and Ara h 6). Attenuated total reflectance−Fourier transform infrared spectroscopy (ATR-FTIR) suggested changes in secondary protein structure. Peanut protein–cranberry polyphenol fortified matrices triggered significantly less basophil degranulation than unmodified flour in an ex vivo assay using human blood and less mast cell degranulation when used to orally challenge peanut-allergic mice. Polyphenol fortification of peanut flour resulted in a hypoallergenic matrix with reduced IgE binding and degranulation capacity, likely due to changes in protein secondary structure or masking of epitopes, suggesting potential applications for oral immunotherapy.

Related Stories

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.