New antibacterial fabric could revolutionise infection control

May 06, 2014
New antibacterial fabric could revolutionise infection control
RMIT research made the cover of the prestigious journal Advanced Functional Materials.

(Phys.org) —RMIT researchers have developed a new antibacterial fabric that can kill a range of infectious bacteria, such as E coli, within 10 minutes.

The discovery could significantly reduce the risk of deadly hospital-acquired infections and revolutionise the way the medical industry deals with infection control.

Secondary infections are a serious and potentially deadly complication for hospital patients.

Antibacterial fabrics do not allow nasty disease-causing bacteria, like Staphylococcus, to stick to and grow on their surface - creating an infection-free environment.

Associate Professor Vipul Bansal from RMIT University's School of Applied Sciences, who leads the NanoBiotechnology Research Laboratory team, said fabrics with the built-in ability to fight bacteria could relegate hospital-acquired infections to the sidelines.

"There is potential for special bedding, linens and surgical aprons on which bugs and bacteria do not grow, so we can maintain an infection-free environment in our healthcare settings," he said.

"We may also have dressings and Band-Aids that can kill bacteria in the wound, resulting in faster healing. These will all have a major impact on the cost of the Australian healthcare system."

RMIT research made the cover of the prestigious journal Advanced Functional Materials.

Associate Professor Bansal said the new fabric will have important environmental and clinical applications.

New antibacterial fabric could revolutionise infection control
Associate Professor Vipul Bansal from RMIT's School of Applied Sciences, who leads the NanoBiotechnology Research Laboratory team.

The next generation of smart textiles will be free from bacteria and odour and have a range of potential applications from clothing - putting an end to smelly socks - to sporting gear and uniforms.

For the past year, Associate Professor Bansal and his team, including PhD candidate Zahra Homan, worked with CSIRO scientists on the project.

They found organic materials with semi-conductor properties can have superior antibacterial effects over metal salts of which are already known for their .

To test the concept, they grew nanowires on fabric which confirmed the antibacterial properties of Ag-TCNQ (tetracyanoquinodimethane).

The results were recently published in the prestigious journal Advanced Functional Materials and featured on the journal's cover.

"It has been known for the last hundred years that silver is anti-bacterial," he said.

"Silver metal, when it comes into contact with body fluids, releases silver ions and these ions are actually toxic and have anti-microbial and antibacterial properties."

Instead of using silver metals, Professor Bansal and his team developed a new material called silver TCNQ, which releases silver ions very slowly for a long-term antibacterial effect.

In another project, the NanoBiotechnology Research Laboratory team is working with nanoparticles of different sizes, shapes, compositions and surface coatings to test their ability to destroy different bacteria.

A nanoparticle is a very small particle where at least one dimension is between one and 100 nanometres (1nm is 1,000,000 times smaller than a millimetre).

"The Holy Grail is to engineer the nanoparticles so they become highly active against , but they do not kill human cells," he said.

"Traditionally, silver nanoparticles are more toxic than gold nanoparticles but our research has shown that silver can be made very safe for biomedical applications by controlling the surface chemistry of nanoparticles."

Associate Professor Bansal said the surface of the nanoparticle is critically important because it is what first comes into contact with bacteria or human cells.

This work was recently featured on the cover of the Royal Society of Chemistry journal Nanoscale.

Explore further: Conflicting opinions about the risks of antibacterial silver

add to favorites email to friend print save as pdf

Related Stories

Antibacterial silver nanoparticles are a blast

May 24, 2010

Writing in the International Journal of Nanoparticles, Rani Pattabi and colleagues at Mangalore University, explain how blasting silver nitrate solution with an electron beam can generate nanoparticles that are more effect ...

Greener methods for making popular nanoparticle

Apr 24, 2013

Already renowned for its beneficial effects on human health, green tea could have a new role—along with other natural plant-based substances—in a healthier, more sustainable production of the most widely used family of ...

Spinning up antibacterial silver on glass

Jun 27, 2013

The antibacterial effects of silver are well established. Now, researchers at Yonsei University in Seoul, Republic of Korea, have developed a technique to coat glass with a layer of silver ions that can prevent growth of ...

Ions, not particles, make silver toxic to bacteria

Jul 11, 2012

(Phys.org) -- Rice University researchers have settled a long-standing controversy over the mechanism by which silver nanoparticles, the most widely used nanomaterial in the world, kill bacteria.

Recommended for you

New star-shaped molecule breakthrough

11 hours ago

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

DonGateley
not rated yet May 06, 2014
Is this a treatment or is it structural? Will it go away after some number of cleanings or is it a permanent property of the fabric that will last as long as the fabric does?