Algae 'see' a wide range of light

May 1, 2014
Freshwater-dwelling algae like these are among those able to sense a surprisingly wide spectrum of light. Credit: J. Clark Lagarias, UC Davis

(Phys.org) —Aquatic algae can sense an unexpectedly wide range of color, allowing them to sense and adapt to changing light conditions in lakes and oceans. The study by researchers at UC Davis was published earlier this year in the journal Proceedings of the National Academy of Sciences.

Phytochromes are the eyes of a plant, allowing it to detect changes in the color, intensity, and quality of so that the plant can react and adapt. "They control all aspects of a plant's life," said Professor Clark Lagarias, senior author on the study. Typically about 20 percent of a plant's genes are regulated by phytochromes, he said. Phytochromes use bilin pigments that are structurally related to chlorophyll, the molecule that plants use to harvest light and use it to turn carbon dioxide and water into food.

Lagarias' laboratory in the Department of Molecular and Cellular Biology at UC Davis studies these phytochromes and their properties. Phytochromes from , Lagarias said, respond to —plants absorb red and reflect green light, which is why they look green. Red light does not penetrate far into water, and some marine and shore-dwelling lack phytochrome genes. But others do not, so Lagarias and colleagues looked at the properties of phytochromes from a variety of algae. They found that phytochromes from algae, unlike those of land plants, are able to perceive light across the visible spectrum—blue, green, yellow, orange, red and far-red.

Algae 'see' a wide range of light
Cyanophora paradoxa, one of the algae with newly discovered phytochromes.

This broad spectral coverage likely helps algae make use of whatever light they can in the ocean, Lagarias said—whether adjusting their light-harvesting chemistry for changing conditions, or rising and sinking in the water column as light levels at the surface change. Because different colors of light penetrate to different depths in water, algae face challenges in light harvesting that land plants do not. This work from the Lagarias lab shows one way that algae can rise to the occasion.

This video is not supported by your browser at this time.
Clark Lagarias talks about phytochromes, algae and light detection.

Phytochromes themselves have a long evolutionary history and likely arose from the interaction between oxygen and bilins, pigment molecules closely tied to chlorophyll and the oxygen-carrying heme pigment in hemoglobin, Lagarias said. The ancestral form appears to be sensitive to red light, similar to phytochromes of modern land plants. But between the origin and today, phytochromes went through a stage of massive diversity when they could detect a much wider range of wavelengths.

"It's a molecule that has been there and back again," Lagarias said.

The broad color palette of algal bilin-based light sensors found in nature.

The discoveries help researchers better understand the role of light and response to light in shaping ecology, as well as a model for how living cells react to light. They could also help in breeding of aquatic crops that could take advantage of different light conditions.

Explore further: Key Component Identified That Helps Plants Go Green (w/ Video)

More information: Paper: www.pnas.org/content/111/10/3871.full

Related Stories

New technology could help food crops thrive in crowded fields

November 20, 2013

(Phys.org) —With the global population expected to reach 9 billion by 2050, the world's farmers are going to need to produce a lot more food—but without using much more farmland, as the vast majority of the world's arable ...

Marine algae can sense the rainbow

February 24, 2014

A new study published in Proceedings of the National Academy of Sciences has shown for the first time that several types of aquatic algae can detect orange, green and blue light.

Image: False-color image of Earth highlights plant growth

March 10, 2014

On Aug. 3, 2004, NASA's Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft began a seven-year journey, spiraling through the inner solar system to Mercury. One year after launch, the spacecraft ...

Ferns borrowed genes to flourish in low light

April 14, 2014

During the age of the dinosaurs, the arrival of flowering plants as competitors could have spelled doom for the ancient fern lineage. Instead, ferns diversified and flourished under the new canopy—using a mysterious gene ...

Recommended for you

Some vaccines support evolution of more-virulent viruses

July 27, 2015

Scientific experiments with the herpesvirus such as the one that causes Marek's disease in poultry have confirmed, for the first time, the highly controversial theory that some vaccines could allow more-virulent versions ...

Mammoths killed by abrupt climate change

July 23, 2015

New research has revealed abrupt warming, that closely resembles the rapid man-made warming occurring today, has repeatedly played a key role in mass extinction events of large animals, the megafauna, in Earth's past.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.