Researchers identify how zinc regulates a key enzyme involved in cell death

April 2, 2014 by Sathya Achia Abraham
The contrasting but interdependent roles of the metal ions copper and zinc in the regulation of apoptosis perfectly captures the duality of the most fundamental of biological processes, cell life and death. Credit: Nicholas Farrell, Ph.D. / VCU.

The molecular details of how zinc, an essential trace element of human metabolism, interacts with the enzyme caspase-3, which is central to apoptosis or cell death, have been elucidated in a new study led by researchers at Virginia Commonwealth University. The study is featured on the cover of the April issue of the journal Angewandte Chemie International Edition.

Dysregulation of apoptosis is implicated in cancer and neurodegenerative disease such as Alzheimer's disease. Zinc is known to affect the process by inhibiting the activity of caspases, which are important drug targets for the treatment of the above conditions. The findings may help researchers design therapeutic agents that target -caspase interaction to specifically control the activity of caspases, and hence, apoptosis.

"The work is unique in helping to open up a broad new area of research which we call the bioinorganic chemistry of apoptosis – understanding the role of essential metal ions in one of life's fundamental processes," said corresponding author Nicholas P. Farrell, Ph.D., member of the Developmental Therapeutics program at VCU Massey Cancer Center and professor of chemistry in the VCU College of Humanities and Sciences.

"Indeed, the zinc inhibition of apoptosis in fact contrasts with the role of its closely related neighbor copper, which is understood to enhance apoptosis," he said.

In the study, Farrell and his research team, A. Gerard Daniel, Ph.D., and Erica J. Peterson, used conventional enzymology and biophysical techniques combined with state-of-the-art computational methods, to show evidence for a hitherto unrecognized interaction site with caspase-3.

According to Farrell, caspases were discovered in the mid-1990s. There are 11 caspases known humans, and seven of these are involved in . The study suggests a regulatory zinc site that may be common to all caspases. Previous findings have shown other zinc binding sites in caspase-6 and -9. Now, Farrell said, the generality of the team's observations must be extended and verified in other caspases.

"The [journal] cover epitomizes the contrasting but interdependent roles of the copper/zinc in the regulation of and perfectly captures the duality of this most fundamental of biological processes," Farrell said.

Explore further: Dying brightly: Fluorescence lights up cells programmed to die

More information: The study abstract can be found here: onlinelibrary.wiley.com/doi/10.1002/anie.201401105/abstract.

Related Stories

Dying brightly: Fluorescence lights up cells programmed to die

January 25, 2013

Programmed cell death, or apoptosis, occurs tens of millions of times every day in every human body. Researchers in South Korea have devised an easy method to detect apoptotic cells by fluorescence, as they report in Chemistry—An ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.