World's first successful visualisation of key coenzyme

Apr 16, 2014
World's first successful visualisation of key coenzyme
Fluorescent imaging of HeLa cell. Credit: National Institute for Materials Science (NIMS)

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat could ultimately facilitate the diagnosis of cancer and liver dysfunction and help to elucidate the mechanisms of neurological disorders.

A Japanese research team led by Drs. Hirokazu Komatsu and Katsuhiko Ariga of the International Center for Materials Nanoarchitectonics, in collaboration with Professors Yutaka Shido and Kotaro Oka of Keio University, have developed the world's first method for visualising the coenzyme nicotine-adenine dinucleotide derivative (NAD(P)H) inside cells.

Fluorescent imaging – used to identify and visualise cellular components by attaching a substance – is an effective method for exploring vital phenomena. Until now, however, the development of a method for visualising NAD(P)H, which plays a key role in various vital phenomena and diseases, has proven elusive due to the low reactivity of NAD(P)H to fluorescent substances.

The research group succeeded in developing a new fluorescent probe that specifically reacts with NAD(P)H, and achieved fluorescent imaging of NAD(P)H for the first time in the world, through the combined use of the new probe and an artificial promoter capable of promoting reactivity.

The new NADH imaging method could be used for various purposes, including: promoting early detection and supporting cancer treatment by detecting NADH leakage from invasive cancers; diagnosing by detecting excessive NADH caused by cirrhosis of the liver; and elucidating the lack of NADH in patients with brain or such as Alzheimer's Disease, depression, and Parkinson's Disease. The new method will also prove of great value in other life sciences research.

The research results will be published in a German scientific journal, Angewandte Chemie International Edition.

Explore further: Expanding the code of life with new 'letters'

Related Stories

A circuitous route to therapy resistance

Jun 26, 2013

Gliomas are malignant brain tumors that arise from glial cells called astrocytes, found in the central nervous system. "In treating malignant gliomas, we currently combine radiotherapy with the anticancer drug temozolomide. ...

Recommended for you

Expanding the code of life with new 'letters'

5 hours ago

The DNA encoding all life on Earth is made of four building blocks called nucleotides, commonly known as "letters," that line up in pairs and twist into a double helix. Now, two groups of scientists are reporting ...

Researchers find 'decoder ring' powers in micro RNA

May 26, 2015

MicroRNA can serve as a "decoder ring" for understanding complex biological processes, a team of New York University chemists has found. Their study, which appears in Proceedings of the National Academy of Sciences, points ...

DNA mutations get harder to hide

May 26, 2015

Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.