A win-win situation: Growing crops on photovoltaic farms

Apr 09, 2014 by Ker Than
On a co-located solar farm, runoff from water used to clean photovoltaic panels would nourish agave or other biofuel crops. The plants would in turn provide ground cover, helping prevent dust buildup that decreases solar panel efficiency. Credit: Sujith Ravi

Growing agave and other carefully chosen plants amid photovoltaic panels could allow solar farms not only to collect sunlight for electricity but also to produce crops for biofuels, according to new computer models by Stanford scientists.

This co-location approach could prove especially useful in sunny, arid regions such as the southwestern United States where is scarce, said Sujith Ravi, who is conducting postdoctoral research with professors David Lobell and Chris Field, both on faculty in environmental Earth system science and senior fellows at the Stanford Woods Institute for the Environment. "Co-located solar-biofuel systems could be a novel strategy for generating two forms of energy from uncultivable lands: electricity from solar infrastructure and easily transportable liquid fuel from biofuel cultivation," said Ravi, the lead author of a new study published in a recent issue of the journal Environmental Science & Technology that details the idea.

Photovoltaic (PV) solar farms run on sunlight, but water is required to remove dust and dirt from the panels to ensure they operate at maximum efficiency. Water is also used to dampen the ground to prevent the buildup and spread of dust. Crops planted beneath the would capture the runoff water used for cleaning the PV panels, thus helping to optimize the land. The plants' roots would also help anchor the soil and their foliage would help reduce the ability of wind to kick up dust.

Computer simulations of a hypothetical co-location solar farm in Southern California's San Bernardino County by Ravi and colleagues suggest that these two factors together could lead to a reduction in the overall amount of water that solar farms need to operate. "It could be a win-win situation," Ravi said. "Water is already limited in many areas and could be a major constraint in the future. This approach could allow us to produce energy and agriculture with the same water."

But which crops to use? Many operate in sunny but arid regions that are inhospitable to most food crops. But there is one valuable plant that thrives at high temperatures and in poor soil: agave. Native to North and South America, the prickly plant can be used to produce liquid ethanol, a biofuel that can be mixed with gasoline or used to power ethanol vehicles. "Unlike corn or other grains, most of the agave plant can be converted to ethanol," Ravi said.

The team plans to test the co-location approach around the world to determine the ideal plants to use and to gather realistic estimates for crop yield and economic incentives.

"Sujith's work is a great example of how thinking beyond a single challenge like water or food or energy sometimes leads to creative solutions," said Lobell, who is a coauthor on the new study. "Of course, creative solutions don't always work in the real world, but this one at least seems worthy of much more exploration."

Explore further: Negev desert solar field uses water-free robotic cleaning system

More information: Paper: pubs.acs.org/doi/full/10.1021/es404950n

add to favorites email to friend print save as pdf

Related Stories

Biofuel from desert plants grown with seawater

Jan 22, 2014

Aerospace giant Boeing and its research partners in the Middle East said Wednesday they would start field trials after recording progress in making biofuel from desert plants fed with seawater.

Recommended for you

Audi to develop Tesla Model S all-electric rival

15 hours ago

The Tesla Model S has a rival. Audi is to develop all-electric family car. This is to be a family car that will offer an all-electric range of 280 miles (450 kilometers), according to Auto Express, which ...

A green data center with an autonomous power supply

21 hours ago

A new data center in the United States is generating electricity for its servers entirely from renewable sources, converting biogas from a sewage treatment plant into electricity and water. Siemens implemented ...

Can we create an energy efficient Internet?

22 hours ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Shedding light on solar power

Nov 27, 2014

Everyone wants to save energy, but not everyone knows where to start. Grid Resources, a startup based out of the Centre for Urban Energy's iCUE incubator, is developing a new website that seeks to help homeowners ...

Energy transition project moves into its second phase

Nov 27, 2014

Siemens is studying new concepts for optimizing the cost-effectiveness and technical performance of energy systems with distributed and fluctuating electricity production. The associated IRENE research project ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

keihin
5 / 5 (2) Apr 09, 2014
Biofuels aren't the only use for agave-derived ethanol. An alternate product that is both popular and profitable is known locally as "tequila".
hangman04
not rated yet Apr 10, 2014
Biofuels aren't the only use for agave-derived ethanol. An alternate product that is both popular and profitable is known locally as "tequila".

:)) exacly my thought !

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.