Wetlands likely to blame for greenhouse gas increases

Apr 28, 2014

A surprising recent rise in atmospheric methane likely stems from wetland emissions, suggesting that much more of the potent greenhouse gas will be pumped into the atmosphere as northern wetlands continue to thaw and tropical ones to warm, according to a new international study led by a University of Guelph researcher.

The study supports calls for improved monitoring of wetlands and human changes to those ecosystems – a timely topic as the Intergovernmental Panel on Climate Change prepares to examine land use impacts on , says Prof. Merritt Turetsky, Department of Integrative Biology.

Turetsky is the lead author of a paper published today in Global Change Biology based on one of the largest-ever analyses of global methane emissions. The team looked at almost 20,000 field data measurements collected from 70 sites across arctic, temperate and tropical regions.

Agnieszka Kotowska, a former master's student, and David Olefeldt, a post-doc at Guelph, also were among 19 study co-authors from Canada, the United States, the United Kingdom, Finland, Germany and Sweden.

One of the strongest greenhouse gases, methane comes from agriculture and fossil fuel use, as well as natural sources such as microbes in saturated wetland soils.

The amount of has remained relatively stable for about a decade, but concentrations began to rise again in 2007. Scientists believe this increase stems partly from more methane being released from thawing northern wetlands.

Scientists have assumed that wetland methane release is largest in the tropics, said Turetsky.

"But our analyses show that northern fens, such as those created when permafrost thaws, can have emissions comparable to warm sites in the tropics, despite their cold temperatures. That's very important when it comes to scaling methane release at a global scale."

The study calls for better methods of detecting different types of wetlands and methane release rates between flooded and drained areas.

Fens are the most common type of wetland in Canada, but we lack basic scientific approaches for mapping fens using remote sensing products, she said.

"Not only are fens one of the strongest sources of wetland , but we also know that Canadian forests and tundra underlain by permafrost are thawing and creating these kinds of high methane-producing ecosystems."

Most methane studies focus on measurements at a single site, said co-author Narasinha Shurpali, University of Eastern Finland. "Our synthesis of data from a large number of observation points across the globe is unique and serves an important need."

The team showed that small temperature changes can release much more methane from wetland soils to the atmosphere. But whether climate change will ramp up emissions will depend on soil moisture, said Turetsky.

Under warmer and wetter conditions, much more of the gas will be emitted. If wetland soils dry out from evaporation or human drainage, emissions will fall – but not without other problems.

In earlier studies, Turetsky found drying peatlands can spark more wildfires.

Another study co-author, Kim Wickland, United States Geological Survey, said, "This study provides important data for better accounting of how change after wetland drainage and flooding."

Methane emissions vary between natural and disturbed or managed wetlands, says Wickland, who has helped the IPCC improve methods for calculating from managed wetlands.

Explore further: Methane climate change risk suggested by proof of redox cycling of humic substances

add to favorites email to friend print save as pdf

Related Stories

Wetlands the primary source of Amazon Basin methane

Aug 31, 2012

The Amazon basin is an important sink of carbon dioxide, but it is also a substantial source of atmospheric methane. Tropical wetlands, including those in the Amazon, are one of the largest sources of biogenic methane and ...

Recommended for you

Dead floppy drive: Kenya recycles global e-waste

14 hours ago

In an industrial area outside Kenya's capital city, workers in hard hats and white masks take shiny new power drills to computer parts. This assembly line is not assembling, though. It is dismantling some ...

New paper calls for more carbon capture and storage research

19 hours ago

Federal efforts to reduce greenhouse gas emissions must involve increased investment in research and development of carbon capture and storage technologies, according to a new paper published by the University of Wyoming's ...

Coal gas boom in China holds climate change risks

Aug 22, 2014

Deep in the hilly grasslands of remote Inner Mongolia, twin smoke stacks rise more than 200 feet into the sky, their steam and sulfur billowing over herds of sheep and cattle. Both day and night, the rumble ...

User comments : 0