Water-splitting photocatalyst that is abundant and inexpensive with low toxicity discovered

April 14, 2014
Water-splitting photocatalyst that is abundant and inexpensive with low toxicity discovered
Figure 1 from the press release material. Electron microscope imagery of Sn3O4 catalyst. The synthesized material is a collection of microsized (one millionth of a meter) flaky crystals.

As a part of JST's problem-solving oriented basic research program, the research group led by the principal researcher Hideki Abe and the senior researcher Naoto Umezawa at the NIMS's Environmental Remediation Materials Unit discovered a new photocatalyst, Sn3O4, which facilitates the production of hydrogen fuel out of water using sunlight as an energy source.

Technology that allows direct conversion of sunlight, an ultimate renewable energy, into chemical energies (i.e., fuels) that can be condensed and transported is not yet available. As such, solar energy is not ready at present to be utilized in place of conventional fossil and nuclear fuels.

Many water-splitting photocatalysts, such as titanium dioxide (TiO2), can decompose water and produce when absorbing ultraviolet light. However, due to their inability to absorb visible light, which accounts for more than half of solar energy, their practical use in the conversion of solar energy is limited. While the development of new photocatalysts that are able to split water by absorbing visible light has been worked on globally, there are cost- and environment-related issues because many of the available photocatalysts contain expensive rare metals, such as tantalum, or high concentrations of lead, which is very toxic.

We recently discovered a novel photocatalyst through the approach of integrating both theoretical and experimental sciences. We searched for oxides containing divalent tin ions (Sn2+) based on the theoretical prediction that such substances may have an electronic structure conducive to water-splitting photocatalytic reactions under the presence of visible light. As a result, we found a tin oxide, Sn3O4 (Sn2+2Sn4+O4), that is made up of divalent tin ions (Sn2+) and tetravalent tin ions (Sn4+). Our experiment revealed that this substance facilitates a water-splitting reaction leading to the generation of hydrogen when exposed to which does not activate TiO2.

Since tin oxides are relatively non-toxic, inexpensive and abundant, they are widely used as transparent conductive materials. The discovery of the Sn3O4 catalyst is expected to greatly contribute to the reduction of environmental load and costs associated with hydrogen fuel production, and to the realization of a recycling-oriented society founded on the use of .

The results of this research will be published in the near future in the online version of Applied Materials & Interfaces, a journal issued by the American Chemical Society.

Explore further: Solar rays could replace petroleum fuels, research shows

Related Stories

Recommended for you

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (2) Apr 22, 2014
Very good. Photocatalysts based on rare and expensive metals such as platinum will never be cheap enough to provide massive quantities of affordable energy. I'm pleasantly surprised that a catalyst made of tin and oxygen can work well.

It's worth noting that the authors are upfront with the chemical composition of their photocatalyst, Sn3O4. Some of the abstracts on Physorg are pretty evasive about these details.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.