New ultrasound device may add in detecting risk for heart attack, stroke

Apr 24, 2014 by Matt Shipman
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have developed an ultrasound device to help identify arterial plaque that is at high risk of breaking off and causing heart attack or stroke. Credit: Xiaoning Jiang, North Carolina State University

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have developed a new ultrasound device that could help identify arterial plaque that is at high risk of breaking off and causing heart attack or stroke.

At issue is the that builds up in arteries as we age. Some types of plaque are deemed "vulnerable," meaning that they are more likely to detach from the artery wall and cause or stroke.

"Existing state-of-the-art technologies are capable of determining if plaque is present in the arteries, but can't tell whether it's vulnerable. And that makes it difficult to assess a patient's risk," says Dr. Paul Dayton, co-author of a paper on the new device and professor in the joint biomedical engineering department at NC State and Chapel Hill. "Our goal was to develop something that could effectively identify which plaques are vulnerable."

There are two ultrasound techniques that can help identify vulnerable plaques, but both depend on the use of contrast agents called "microbubbles."

The first technique is to identify "vasa vasorum" in arteries. These are clusters of small blood vessels that often infiltrate , and which are considered indicators that a plaque is vulnerable. When microbubbles are injected into an artery, they follow the flow of the blood. If vasa vasorum are present, the microbubbles will flow through these blood vessels as well, effectively highlighting them on ultrasound images.

The second technique is called molecular imaging, and relies on the use of "targeted" microbubbles. These microbubbles attach themselves to specific molecules that are more likely to be found in vulnerable plaques, making the plaques stand out on .

"The problem is that existing intravascular ultrasound technology does not do a very good job in detecting contrast agents," says Dr. Xiaoning Jiang, an NC State associate professor of mechanical and aerospace engineering, an adjunct professor of and co-author of the paper.

"So we've developed a dual-frequency intravascular ultrasound transducer which transmits and receives acoustic signals," Jiang says. "Operating on two frequencies allows us to do everything the existing intravascular ultrasound devices can do, but also makes it much easier for us to detect the – or – used for molecular imaging and vasa vasorum detection."

The prototype device has performed well in laboratory testing, but the researchers say they are continuing to optimize the technology. They hope to launch pre-clinical studies in the near future.

Explore further: CT measures potentially dangerous arterial plaque in diabetic patients

More information: "A preliminary engineering design of intravascular dual-frequency transducers for contrast enhanced acoustic angiography and molecular imaging", Jianguo Ma and Xiaoning Jiang, North Carolina State University; Heath Martin and Paul A. Dayton, North Carolina State University and the University of North Carolina at Chapel Hill, Published: May 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection due to their design for high-frequency fundamental mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small aperture (0.6 x 3 mm2), IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, -6 dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200 ?m diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. The preliminary phantom imaging at the fundamental frequency (30 MHz) and dual frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast enhanced IVUS imaging.

Related Stories

Nanoparticle pinpoints blood vessel plaques

Feb 06, 2014

A team of researchers, led by scientists at Case Western Reserve University, has developed a multifunctional nanoparticle that enables magnetic resonance imaging (MRI) to pinpoint blood vessel plaques caused by atherosclerosis. ...

Recommended for you

Internet of things should be developable for all

5 hours ago

Within the next five to ten years, around 100 billion different devices will be online. A large part of the communication takes place solely between machines, and to ensure that they can communicate, the ...

Firm combines 3-D printing with ancient foundry method

Mar 27, 2015

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.