Tiger beetle's chase highlights mechanical law

April 10, 2014 by Anne Ju
Tiger beetle's chase highlights mechanical law
A visual representation of a tracked tiger beetle’s trajectories as it chases prey. By observing a beetle’s chase, scientists have derived a physical law that it follows to optimize its predation strategies. Credit: Jane Wang

(Phys.org) —If an insect drew a line as it chased its next meal, the resulting pattern would be a tangled mess. But there's method to that mess, says Jane Wang, professor of mechanical engineering and physics, who tries to find simple physical explanations for complex, hardwired animal behaviors.

It turns out the tiger beetle, known for its speed and agility, does an optimal reorientation dance as it chases its at blinding speeds. Publishing online April 9 in the Journal of the Royal Society Interface, Wang and colleagues used high-speed cameras and statistical analysis to reveal a proportional control law in which the angular position of prey, relative to the beetle's body axis, drives the beetle's with a delay of 28 milliseconds. That's about a half-stride in beetle terms.

These observations led Wang to propose a physical interpretation of the behavior: that to turn toward its prey, the beetle, on average, exerts a sideways force proportional to the prey's angular position, measured a half-stride earlier.

"The idea is to find laws that animals use to intercept their prey," Wang said. "We do it, too [interception] – when trying to catch a baseball, or when chasing someone. But since insects have a smaller number of neurons, their behaviors are more likely hardwired, which makes it possible for us to find and understand the rules they follow."

Why the ? It's a nice model system, Wang said, which she learned after attending a talk several years ago by entomology professor Cole Gilbert, who studies neural mechanisms of behavior in arthropods and is a paper co-author. Andreas Haselsteiner, the paper's first author, was a visiting student in Wang's lab and designed the experiments.

For the experiments, a "dummy prey" – a black bead – was dangled in front of the beetle, which, mistaking the bead for a meal, would give chase. Its chasing patterns were recorded with a high-speed camera.

From their analysis emerged a macroscopic description of the animal's movements, which reveals an internal time scale that governs the beetle's sensing-to-actuation system and a close-to-optimal gain value in the control algorithm, Wang said.

From an evolutionary point of view, the sensing and moving are intimately connected, Wang continued. Some of the hundreds of thousands of neurons that function for sight are directly connected to the machinery for locomotion, which is directly related to the animal's instinct to survive – that is, eat. Thus, studying how animals move can provide insight into how they sense their environment, and vice versa, she said.

Explore further: Dung beetle dance provides crucial navigation cues

More information: Tiger beetles pursue prey using a proportional control law with a delay of one half stride, rsif.royalsocietypublishing.org/lookup/doi/10.1098/rsif.2014.0216

Related Stories

Dung beetle dance provides crucial navigation cues

January 18, 2012

(PhysOrg.com) -- The dung beetle dance, performed as the dung beetle moves away from the dung pile with his precious dung ball, is a mechanism to maintain the desired straight-line departure from the pile, according to a ...

Pining for a beetle genome

March 26, 2013

The sequencing and assembly of the genome of the mountain pine beetle, Dendroctonus ponderosae, is published online this week in Genome Biology. The species is native to North America, where it is currently wreaking havoc ...

Crittercam captures crocodilian foraging behaviors

January 15, 2014

Animal-borne camera reveals that alligators may attempt to capture prey most often at night, even though the calculated probability of catching prey is highest in the morning, according to a study published in PLOS ONE on ...

Speedy tiger beetles use antennae to 'see' while running

February 7, 2014

(Phys.org) —Speed is blinding. Just ask the tiger beetle, the fastest insect its size. Though predatory tiger beetles have excellent sight, when they chase prey, they run so fast they can no longer see where they are going.

Recommended for you

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.