New technique detects microscopic diabetes-related eye damage

Apr 17, 2014
New technique detects microscopic diabetes-related eye damage
This is a retinal capillary with multiple loops. The blood cannot travel directly to nourish the retinal cells. Credit: The Burns Lab

Indiana University researchers have detected new early-warning signs of the potential loss of sight associated with diabetes. This discovery could have far-reaching implications for the diagnosis and treatment of diabetic retinopathy, potentially impacting the care of over 25 million Americans.

"We had not expected to see such striking changes to the retinas at such early stages," said Ann Elsner, professor and associate dean in the IU School of Optometry and lead author of the study. "We set out to study the early signs, in volunteer research subjects whose eyes were not thought to have very advanced disease. There was damage spread widely across the , including changes to that were not thought to occur until the more advanced disease states."

These important early-warning signs were invisible to existing diagnostic techniques, requiring new technology based on . Stephen Burns, professor and associate dean at the IU School of Optometry, designed and built an instrument that used small mirrors with tiny moveable segments to reflect light into the eye to overcome the optical imperfections of each person's eye.

"It is shocking to see that there can be large areas of retina with insufficient blood circulation," he said. "The consequence for individual patients is that some have far more advanced damage to their retinas than others with the same duration of diabetes."

Because these changes had not been observable in prior studies, it is not known whether improved control of blood sugar or a change in medications might stop or even reverse the damage. Further research can help determine who has the most severe damage and whether the changes can be reversed.

The study, "In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe ," was published in the journal Biomedical Optics Express.

Diabetes has long been known to damage the retina, the irreplaceable network of nerve cells that capture light and give the first signal in the process of seeing. This damage to the retina, known as diabetic retinopathy, is the leading cause of vision loss in the U.S. for individuals under the age of 75.

The changes to the subjects in the study included corkscrew-shaped . The capillaries were not just a little thicker, and therefore distorted, but instead the had to grow in length to make these loops. This is visible only at microscopic levels, making it difficult to determine who has the more advanced disease among patients, because these eyes look similar when viewed with the typical instruments found in the clinic. Yet, some of these patients already have sight-threatening complications.

Diabetes also is known to result in a variety of types of damage to capillaries, the body's smallest blood vessels. The more commonly known changes, such as microaneurysms along the capillaries, were also present in the study, but seen in much greater detail. In addition to the corkscrew appearance and microaneurysms, along with the hemorrhages in the later stages of the disease, there is also a thickening of the walls of blood vessels. This is thought to be associated with poor blood flow or failure to properly regulate blood flow.

In the study, patients with diabetes had significantly thicker blood vessel walls than found in controls of similar ages, even for relatively small diameter blood vessels. The capillaries varied in width in the diabetic patients, with some capillaries closed so that they no longer transported blood within the retina. On average, though, the capillaries that still had flowing blood were broader for the patients with diabetes. These had been thought to have fairly mild symptoms. In fact, the transport of oxygen and glucose to the retina is already compromised.

Previous diagnostic techniques have been unable to uncover several of these changes in living . Simply magnifying the image of the retina is not sufficient. The view through the imperfect optics of the human eye has to be corrected.

The instrument designed by Burns takes advantage of adaptive optics to obtain a sharp image, and also minimized optical errors throughout the instrument. Using this approach, the tiny capillaries in the eye appear quite large on a computer screen. These blood vessels are shown in a video format, allowing careful focus and observation of blood cells moving through the blood vessels. After imaging each patient's eye, highly magnified retinal images are then pieced together with software, providing still images or videos.

Explore further: Cell-saving drugs could reduce brain damage after stroke

More information: The study is available at http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-5-3-961.

add to favorites email to friend print save as pdf

Related Stories

Diabetes leading to blindness in many people

Nov 30, 2012

Diabetes is the leading cause of new cases of blindness among adults 20 to 74 years old. Dr. Michael Grodin, co-director of retinal services and director of clinical research at Katzen Eye Group, with locations around Baltimore, ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.