New technique will accelerate genetic characterization of photosynthesis

Apr 15, 2014

Photosynthesis provides fixed carbon and energy for nearly all life on Earth, yet many aspects of this fascinating process remain mysterious. For example, little is known about how it is regulated in response to changes in light intensity. More fundamentally, we do not know the full list of the parts of the molecular machines that perform photosynthesis in any organism.

A type of single-cell green algae called Chlamydomonas reinhardtii is a leading subject for photosynthesis research. Despite its importance in the research world, few tools are available for characterizing the functions of its genes.

A team including Carnegie's Martin Jonikas developed a highly sophisticated tool that will transform the work of by making large-scale genetic characterization of Chlamydomonas mutants possible for the first time. Their work is published by The Plant Cell.

Their tool is a major step forward in the goal of identifying the genes that are necessary for photosynthesis, as well as other cellular functions such as the production of oily fats that are crucial for biofuel development. The use of similar tools for non-photosynthetic, single-celled organisms has revolutionized the understanding of cellular processes in bacteria and yeast, as well as animals.

"Our sequencing tool enables genotyping Chlamydomonas on an unprecedented scale, opening the door to comprehensive identification of genes required for ," Jonikas said.

Explore further: Studying photosynthesis, from outer space

add to favorites email to friend print save as pdf

Related Stories

Studying photosynthesis, from outer space

Mar 24, 2014

Plants convert energy from sunlight into chemical energy during a process called photosynthesis. This energy is passed on to humans and animals that eat the plants, and thus photosynthesis is the primary ...

What makes a plant a plant?

Jun 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Plant growth enhanced through promotion of pore opening

Mar 27, 2014

By determining the key factor in regulating photosynthesis and plant growth, Professor Toshinori Kinoshita, Dr. Yin Wang and co-workers at Nagoya University's Institute of Transformative Bio-Molecules (WPI-ITbM) ...

Recommended for you

Cohesin molecule safeguards cell division

6 hours ago

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

6 hours ago

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

9 hours ago

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.