New technique will accelerate genetic characterization of photosynthesis

Apr 15, 2014

Photosynthesis provides fixed carbon and energy for nearly all life on Earth, yet many aspects of this fascinating process remain mysterious. For example, little is known about how it is regulated in response to changes in light intensity. More fundamentally, we do not know the full list of the parts of the molecular machines that perform photosynthesis in any organism.

A type of single-cell green algae called Chlamydomonas reinhardtii is a leading subject for photosynthesis research. Despite its importance in the research world, few tools are available for characterizing the functions of its genes.

A team including Carnegie's Martin Jonikas developed a highly sophisticated tool that will transform the work of by making large-scale genetic characterization of Chlamydomonas mutants possible for the first time. Their work is published by The Plant Cell.

Their tool is a major step forward in the goal of identifying the genes that are necessary for photosynthesis, as well as other cellular functions such as the production of oily fats that are crucial for biofuel development. The use of similar tools for non-photosynthetic, single-celled organisms has revolutionized the understanding of cellular processes in bacteria and yeast, as well as animals.

"Our sequencing tool enables genotyping Chlamydomonas on an unprecedented scale, opening the door to comprehensive identification of genes required for ," Jonikas said.

Explore further: Studying photosynthesis, from outer space

add to favorites email to friend print save as pdf

Related Stories

Studying photosynthesis, from outer space

Mar 24, 2014

Plants convert energy from sunlight into chemical energy during a process called photosynthesis. This energy is passed on to humans and animals that eat the plants, and thus photosynthesis is the primary ...

What makes a plant a plant?

Jun 15, 2011

Although scientists have been able to sequence the genomes of many organisms, they still lack a context for associating the proteins encoded in genes with specific biological processes. To better understand the genetics underlying ...

Plant growth enhanced through promotion of pore opening

Mar 27, 2014

By determining the key factor in regulating photosynthesis and plant growth, Professor Toshinori Kinoshita, Dr. Yin Wang and co-workers at Nagoya University's Institute of Transformative Bio-Molecules (WPI-ITbM) ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0