New measurement technique could help astronomers find planets hidden in data

Apr 01, 2014 by Chad Boutin
New measurement technique could help astronomers find planets hidden in data
A thorium emission lamp’s violet glow, when viewed through a spectroscope (metal tube on right in top image), is split into a spectrum of thousands of bright lines (bottom image). New measurements of these lines could help astronomers search for earthlike planets around distant stars. Credit: Boutin/NIST

(Phys.org) —Researchers at the National Institute of Standards and Technology (NIST) have rejuvenated a technique for finding planets near distant stars.* New measurements of light from special lamps could help astronomers find planets hidden in data from more than a decade's worth of extrasolar planet searches, as well as improve telescopes' current capabilities.

Finding is tricky. Seen through a telescope, planets in the "habitable zone"—a region close to a star, where liquid water could exist on a planet's surface—usually get lost in their star's glare. But as a planet orbits, its gravity makes its parent star wobble a tiny bit, resulting in slight color changes in the star's light due to the Doppler effect. These changes can only be spotted if the light is first broken into a spectrum of thin lines, which are then compared to an unchanging reference spectrum.

"It's like holding one ruler in front of another and moving the front one to the right and left," says NIST physicist Gillian Nave. "You can see the front ruler move compared to the one behind it. The star's spectrum is the front ruler, which moves as the planet tugs at it. But the movement is so small that to see it clearly, we need to put a fixed ruler of very high quality behind it. That's where NIST comes in."

The NIST team made extensive new of thorium, a heavy element often used in emission lamps that help provide that fixed ruler. Scientists have detected more than 400 planets using the Doppler technique but have yet to discover a solar system similar to ours. The new data could help, says Nave.

"Earth causes the Sun to move at a snail's pace," says Nave. "We don't yet have techniques that can find planets of that size, but our new data will get us much closer."

Stephen Redman, a postdoctoral fellow working at NIST, worked with Nave and physicist Craig Sansonetti to update the most recent thorough measurement of thorium's spectrum, published in 1983. The more than 8,000 it lists are a bit fuzzy by today's standards—good enough to reveal the larger wobble caused by a Jupiter-sized gas giant's gravity, but not the small one an Earth-like world would cause. Redman spent a year combining observations he made on a spectrometer at NIST with data culled from other researchers' work. The result is a set of nearly 20,000 spectral lines of far greater clarity.

In addition to finding systems similar to our own, the new data should aid the search for planets around dwarf . These have been hard to find using the Doppler method, in part because dwarfs are so faint, but Nave says the new data include good lines in the near infrared, which is the region of the spectrum in which many of these cool stars give off the most light.

"We've already had astronomers from several telescopes ask if they could use the data for planet hunting," Nave says. "With luck, the measurements will help us search for near stars whose wobbling has been hard to detect."

Explore further: Scientists detect water around a hot Jupiter

More information: S.L. Redman, G. Nave and C.J. Sansonetti. "The spectrum of thorium from 250 nm to 5500 nm:Ritz wavelengths and optimized energy levels." Astrophysical Journal, DOI: 10.1088/0067-0049/211/1/4, February. 2014.

add to favorites email to friend print save as pdf

Related Stories

Scientists detect water around a hot Jupiter

Mar 19, 2014

Scientists at the Naval Research Laboratory (NRL) are part of a research team that has detected water vapor in the atmosphere of a planet outside our solar system. The team, including scientists from California ...

Explainer: How astronomers find exoplanets

Mar 13, 2014

Astronomers didn't know, 20 years ago, whether planets existed around any stars other than the Sun. All that changed in 1995 with the discovery of an exoplanet orbiting the star 51 Pegasi. And by the beginning of 2014, ...

Every red dwarf star has at least one planet

Mar 04, 2014

Three new planets classified as habitable-zone super-Earths are amongst eight new planets discovered orbiting nearby red dwarf stars by an international team of astronomers from the UK and Chile.

Water vapor detected in the atmosphere of a hot Jupiter

Feb 25, 2014

California Institute of Technology (Caltech) astronomers using data gathered at the W. M. Keck Observatory have developed a new technique for planetary scientists that could provide insight into how many ...

First planet found around solar twin in star cluster

Jan 15, 2014

Astronomers have used ESO's HARPS planet hunter in Chile, along with other telescopes around the world, to discover three planets orbiting stars in the cluster Messier 67. Although more than one thousand ...

Astronomers discover new planet in Pisces constellation

Jan 09, 2014

A team led by SF State astronomer Stephen Kane has discovered a new giant planet located in a star system within the Pisces constellation. The planet, perhaps twice the mass of Jupiter, could help researchers ...

Recommended for you

Kepler proves it can still find planets

Dec 18, 2014

To paraphrase Mark Twain, the report of the Kepler spacecraft's death was greatly exaggerated. Despite a malfunction that ended its primary mission in May 2013, Kepler is still alive and working. The evidence ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.