Team helps cancer treatment drugs get past their sticking point

April 23, 2014 by Chad Boutin
Increasing the concentration of MAb proteins in solution makes them pair off, forming clusters of two MAb molecules. This recent discovery could help scientists deal with these proteins’ high viscosity, which is commonly a barrier to drug development. Credit: NIST

Potentially valuable drugs slowed down by sticky molecules may get another shot at success. Joint research by the National Institute of Standards and Technology (NIST), Genentech, the University of Delaware and Institut Laue-Langevin (ILL) has revealed the reason why a certain class of proteins tends to form clusters that lead to high viscosity in drug solutions.

The newly published results could help create a variety of cancer and autoimmune disease treatments based on , whose stickiness can make them difficult to administer through thin needles.

Monoclonal antibodies (mAbs) are Y-shaped protein molecules that hold great promise for disease treatment. In principle, the tip region of two of their "arms" can be engineered to deliver attacks on tumor cells without harming surrounding tissue, making mAbs less dangerous to the body than standard chemotherapy, that kills both healthy and cancerous cells. However, a roadblock in the way of their bright pharmaceutical future as a subcutaneous injection—the preferred delivery technique—is their high viscosity: in solution, some mAbs become so viscous at required high concentrations that they are nearly impossible to inject.

MAbs with low enough viscosity can be injected, but pharmaceutical firms—which commonly spend billions of dollars to bring individual drugs to market—still don't know why some other mAbs stick together so tightly, meaning they can't be injected. So when Yun Liu of the NIST Center for Neutron Research (NCNR) published results in 2010 about why some globular proteins form clusters in solution, he attracted the attention of Genentech, a company that already had mAb-based drugs on the market.

"With the neutron beams at the NCNR, we essentially can take a picture of protein motions at a timescale of less than half a microsecond, which is fast enough to see how they change their orientations and move together in solution," Liu says. "When you put these mAbs in water, they twist around and stick to one another. We wanted to explore the fundamentals of viscosity by understanding the molecular structure as it develops, so we can model it better."

Genentech scientists had learned a few things about their mAbs already: Adding salt to the solution reduced its viscosity, for example. But using the neutron spin echo instruments at NCNR and ILL, Liu and scientists from several institutions found out something more fundamental. In the high concentrations needed in drug solutions, these mAbs partner up, forming very strongly bounded clusters made primarily of two at a time, with an arm from one molecule linked by electrical attraction to a different arm on another.

"We believe that this is a key insight that explains the company's findings, as well as the behavior of possibly some other mAbs," Liu says. "Knowing that much will allow us to model these protein clusters, so we can do simulations about their behavior based on their sequence. It offers a guide for drug companies to formulate similar types of proteins in the future."

The operation of the neutron spin echo instrument at NIST is funded in part by the National Science Foundation.

Explore further: Long-predicted fluctuations in cell membranes observed for first time

More information: E.J. Yearley, P.D. Godfrin, T. Perevozchikova, H. Zhang, P. Falus, L. Porcar, M. Nagao, J.E. Curtis, P. Gawande, R. Taing, I.E. Zarraga, N.J. Wagner and Y. Liu. "Observation of small cluster formation in concentrated monoclonal antibody solutions and its implications to solution viscosity." Biophysical Journal, DOI: 10.1016/j.bpj.2014.02.036, April 16, 2014.

Related Stories

Accelerating cellular assembly lines

January 2, 2013

The immune system generates antibodies to mark threats that need to be eliminated, and these protein complexes bind their targets with remarkable strength and selectivity. Scientists have learned how to generate cell lines ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.