Synthetic gene circuits pump up cell signals

Apr 08, 2014 by Mike Williams

( —Synthetic genetic circuitry created by researchers at Rice University is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated in Parkinson's, Huntington's and other diseases.

The Rice lab of chemical and biomolecular engineer Laura Segatori has designed a sophisticated circuit that signals increases in the degradation of proteins by the cell's ubiquitin proteasome system (UPS).

The research appears online today in Nature Communications.

The UPS is essential to a variety of fundamental cellular processes, including the cell cycle, DNA repair, immune response, cell death and the degradation of misfolded and damaged proteins. It has several components: ubiquitin molecules that tag misfolded proteins for degradation and proteasomes that latch onto the tagged proteins and break them down into harmless peptides.

When there are too few proteasomes in a cell, or they don't function properly, misfolded proteins that remain floating in the cytoplasm can aggregate. These aggregates can form plaques, as often seen in the brains of people with neurodegenerative diseases.

The Rice team added to the cell a set of genetic circuits called Degradation On – "Deg-On" for short. These circuits produce a green fluorescent signal linked to UPS degradation and allow the researchers to monitor proteasomal activity.

"The overall goal is to develop a technology to screen for molecules that would enhance or activate degradation," said Segatori, Rice's T.N. Law Assistant Professor of Chemical and Biomolecular Engineering and an assistant professor of biochemistry and cell biology.

"The proteasome is essentially a big barrel that unfolds and chops up misfolded proteins. We know how to inhibit degradation, but we want to find ways to activate it, because we think that will be useful to help prevent accumulation of misfolded proteins and aggregation, which are associated with the development of a number of human diseases."

The Deg-On circuit couples proteasomal degradation of an engineered tetracycline repressor to an easily detectable fluorescent signal. The tetracycline repressor is engineered to function as a UPS substrate; it essentially mimics a misfolded protein.

Normally, enhanced degradation would dampen the output signal, but this genetic circuit makes it possible to link enhanced degradation to an increase in output. The engineered repressor can still be regulated by the antibiotic tetracycline, which allows calibrating the system for the detection of even minimal activation of UPS degradation. An additional synthetic circuit provides a feedback loop that enables the self-amplification of the repressor so that adding tetracycline further boosts the signal.

The Rice team did extensive computer modeling of Deg-On to improve its sensitivity and dynamic range before building and testing the system on lab-standard HeLa cells. The team included graduate student and lead author Wenting Zhao, undergraduate Claire McWhite and Rice alumnus Matthew Bonem, in collaboration with Jonathan Silberg, an associate professor of biochemistry and at Rice.

"We came up with the idea of having a feedback loop, which is a self-activation loop for the tetracycline repressor, in our second circuit (an enhanced Deg-On)," Zhao said. "We found that a small increase in UPS activity caused a small decrease in the TetR repressor protein. Because TetR activates its own expression in the enhanced Deg-On, the fluorescent output signal is amplified and the circuit gains in sensitivity and dynamic range."

"Wenting's work was instrumental in predicting changes in the circuit architecture that would lead to enhanced sensitivity," Segatori said.

The lab's immediate goal is to create assays for the rapid detection of small molecules or genes that can increase proteasomal activity, she said. "This will help us rationally design compounds or strategies that could enhance not only for the study and treatment of misfolding diseases but also for a variety of other applications.

"Misfolding and aggregation are among the main challenges in the fields of bioengineering and biotechnology. They are the bottleneck in the high-yield production of recombinant proteins, for example, in cells engineered to crank up expression of a of interest," Segatori said.

Explore further: Gene prevents buildup of misfolded cell proteins

More information: "Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit," Wenting Zhao, et al. Nature Communications 5, Article number: 3612 DOI: 10.1038/ncomms4612. Received 26 July 2013 Accepted 10 March 2014 Published 08 April 2014

add to favorites email to friend print save as pdf

Related Stories

Rice opens new window on Parkinson's disease

Dec 17, 2012

(Medical Xpress)—Rice University scientists have discovered a new way to look inside living cells and see the insoluble fibrillar deposits associated with Parkinson's disease.

Gene prevents buildup of misfolded cell proteins

Jan 24, 2014

( —Much like how a snowplow is needed to clear streets of heavy snow, cells employ a set of genes to clear away misfolded proteins, to prevent them from accumulating and destroying the cell.

Recommended for you

Chemical biologists find new halogenation enzyme

9 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

14 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

14 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

16 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0