'Shuttle' technology reveals mineral formations

Apr 14, 2014 by Stan Wilson
As the sonde is taken up from the bottom of the drill hole it logs the data of the surrounding rock formations. Credit: Anna Petts

Technology developed in Australia is allowing drillers to detect rock formations deep in the earth and simultaneously survey the borehole—all during the drilling process.

Drillers are then able to upload the data instantaneously to business centres for analysis. This is all done without traditionally used and expensive wire-line crews.

The technology developed by Deep Exploration Technologies Co-operative Research Centre (DET CRC) uses a shuttle or sonde and was jointly built, designed and tested by researchers at Curtin University and Perth-based company Globaltech.

Called the 'Pathfinder Multi Shot Autonomous Sonde' it records properties of rock formations whilst deep in the earth as well as measuring azimuth and dip of the borehole at regular intervals.

The sonde is pumped down through the drill to the bottom of a drill hole so that it protrudes beyond the drill bit. Then as the drill rods are removed, taking the sonde up too, it logs the data of the surrounding rock formations and the characteristics of the hole.

DET CRC Chief Executive Richard Hillis says this is a cost effective way of retrieving real-time data on deep in the earth.

"This may also permit the use of drilling techniques that are only half the cost of conventional diamond drilling," he says.

During a test at the DET CRC's Brukunga Drilling Research and Training Facility the sonde successfully recorded the natural gamma radiation in a test hole indicating that it could differentiate between rock types.

The sonde is capable of being loaded with a suite of sensors and could replace the need for drill core, saving time and analysis costs.

Current drilling technology relies on core samples being sent to laboratories for analysis, which can mean delays of weeks or months, plus the cores are destroyed in the assay process. If more data is needed, drilling crews are sent back out to the site.

Globaltech project leader Gordon Stewart says crews can deploy the sonde on site.

"[Meaning] the real time information can be obtained before the drill hole collapses. Also the expense of sending separate wireline crews to run sensors down the hole can be eliminated," he says.

The sonde is also self-powered and autonomous which means there are no power or communication wires to break—a recurring issue with traditional wireline logging tools.

This technology comes at a time when Australia's resource and mining industry is facing rising costs coupled with declining mineral prices.

The sonde is currently being field tested in north Western Australia.

Explore further: World's first magma-enhanced geothermal system created in Iceland

add to favorites email to friend print save as pdf

Related Stories

Preparatory drill test performed on Mars

Feb 07, 2013

(Phys.org)—The drill on NASA's Mars rover Curiosity used both percussion and rotation to bore about 0.8 inch (2 centimeters) into a rock on Mars and generate cuttings for evaluation in advance of the rover's ...

'Electronic ears' to guide mining drills

Apr 29, 2008

CSIRO scientists with the Minerals Down Under National Research Flagship have successfully used an electronic listening post to track and control a drill operating more than 300 metres below the Earth’s ...

Recommended for you

Jeju Island is a live volcano, study reveals

9 hours ago

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral ...

Has Antarctic sea ice expansion been overestimated?

9 hours ago

New research suggests that Antarctic sea ice may not be expanding as fast as previously thought. A team of scientists say much of the increase measured for Southern Hemisphere sea ice could be due to a processing ...

User comments : 0