Scientists ID genes that could lead to tough, disease-resistant varieties of rice

Apr 01, 2014 by Marcia Goodrich
Scientists ID genes that could lead to tough, disease-resistant varieties of rice
Michigan Tech scientists have pinpointed genes that could be key in the development of hardy, disease-resistant grains, including rice. Credit: Thinkstock

(Phys.org) —As the Earth's human population marches toward 9 billion, the need for hardy new varieties of grain crops has never been greater.

It won't be enough to yield record harvests under perfect conditions. In an era of climate change, pollution and the global spread of pathogens, these new grains must also be able to handle stress. Now, researchers at Michigan Technological University have identified a set of genes that could be key to the development of the next generation of super rice.

A meta-data analysis by biologist Ramakrishna Wusirika and PhD student Rafi Shaik has uncovered more than 1,000 genes in rice that appear to play key roles in managing its response to two different kinds of stress: biotic, generally caused by infectious organisms like bacteria; and abiotic, caused by environmental agents, like nutrient deficiency, flood and salinity.

Traditionally, scientists have believed that different sets of genes regulated plants' responses to biotic and abiotic stress. However, Wusirika and Shaik discovered that 1,377 of the approximately 3,800 genes involved in rice's played a role in both types stress. "These are the genes we think are involved in the cross talk between biotic and abiotic stesses," said Wusirika.

About 70 percent of those "master" genes are co-expressive—they turn on under both kinds of stress. Typically, the others turn on for biotic stress and turn off for abiotic stress.

The scientists looked at the genes' response to five abiotic stresses—drought, heavy metal contamination, salt, cold and nutrient deprivation—and five biotic stresses—bacteria, fungus, insect predation, weed competition and nematodes. A total of 196 genes showed a wide range of expressions to these stresses.

"The top genes are likely candidates for developing a rice variety with broad stress-range tolerance," Wusirika said.

Next, they would like to test their findings. "We want to do experimental analysis to see if five or 10 of the work as predicted," he said.

Explore further: Investigators insert large DNA sequence into mammalian cells

More information: "Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice." Shaik R, Ramakrishna W. Plant Physiol. 2014 Jan;164(1):481-95. DOI: 10.1104/pp.113.225862. Epub 2013 Nov 14.

Related Stories

New functions for 'junk' DNA?

Mar 31, 2014

DNA is the molecule that encodes the genetic instructions enabling a cell to produce the thousands of proteins it typically needs. The linear sequence of the A, T, C, and G bases in what is called coding ...

A new role for cytokinin plant hormones

Sep 09, 2011

When plants, including crops, are exposed to environmental stresses such as drought or high salinity, abscisic acid (ABA), a stress-responsive hormone is synthesized to induce a protective response. At the same time, the ...

Researchers identify sterility genes in hybrid rice

Sep 14, 2012

(Phys.org)—Hybrids of many plant and animal species and subspecies are sterile, and a group of researchers in China have now identified the genes that operate to make crossbred rice sterile.

Recommended for you

Investigators insert large DNA sequence into mammalian cells

7 hours ago

For the first time, researchers have used a simplified technique derived from a defense mechanism evolved by bacteria and other single-celled organisms to successfully insert a large DNA sequence into a predetermined genomic ...

Can gene editing provide a solution to global hunger?

17 hours ago

According to the World Food Program, some 795 million people – one in nine people on earth – don't have enough food to lead a healthy active life. That will only get worse with the next global food cris ...

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.