The science of champagne fizz: How many bubbles are in your bubbly?

Apr 02, 2014

The importance of fizz, more technically known as effervescence, in sparkling wines and champagnes is not to be underestimated—it contributes to the complete sensory experience of a glass, or flute, of fine bubbly. A scientist has now closely examined the factors that affect these bubbles, and he has come up with an estimate of just how many are in each glass. The report appears in ACS' The Journal of Physical Chemistry B.

Gérard Liger-Belair notes that effervescence plays an important role in the look, taste, aroma and mouth feel of champagne and other . Wine journalists and bloggers often cite 15 million as the average number of bubbles fizzing in a single glass of champagne, based on some simple mathematics. Sounds impressive, but Liger-Belair suspected that the formula leading to this estimate oversimplified the matter. It didn't take into account the fact that some of the dissolved carbon dioxide escapes from a glass without forming bubbles. Also, the size of the bubbles changes over time, and this could affect the final number. Liger-Belair wanted to set the record straight.

Taking into consideration temperature, bubble dynamics and the tilt of a flute, Liger-Belair came up with a new way to calculate the number of bubbles in a of champagne. And the result is far lower than what has been cited. "One million bubbles seems to be a reasonable approximation for the whole number of likely to form if you resist drinking from your flute," he concludes. He also found that if you prefer more fizz in your bubbly, serve it warmer than you normally would and be sure to tilt the flute when pouring.

Explore further: New technique reveals immune cell motion through variety of tissues

More information: "How Many Bubbles in Your Glass of Bubbly?" J. Phys. Chem. B, 2014, 118 (11), pp 3156–3163. DOI: 10.1021/jp500295e

Abstract
The issue about how many carbon dioxide bubbles are likely to nucleate in a glass of champagne (or bubbly) is of concern for sommeliers, wine journalists, experienced tasters, and any open minded physical chemist wondering about complex phenomena at play in a glass of bubbly. The whole number of bubbles likely to form in a single glass is the result of the fine interplay between dissolved CO2, tiny gas pockets trapped within particles acting as bubble nucleation sites, and ascending bubble dynamics. Based on theoretical models combining ascending bubble dynamics and mass transfer equations, the falsely naı̈ve question of how many bubbles are likely to form per glass is discussed in the present work. A theoretical relationship is derived, which provides the whole number of bubbles likely to form per glass, depending on various parameters of both the wine and the glass itself.

add to favorites email to friend print save as pdf

Related Stories

The indiscretions of a champagne bubble paparazzi

Feb 14, 2012

The innermost secrets of champagne bubbles are about to be unveiled in the Springer journal European Physical Journal ST. This fascinating work is the brainchild of Gérard Liger-Belair, a scientist tackli ...

Champagne gases different out of a flute versus coupe

Feb 08, 2012

Champagne just isn't champagne without its bubbles, and a study highlights the effects that champagne glass shape and temperature can have on carbonation upon serving and the drinking experience. The full report is published ...

Champagne physicist reveals the secrets of bubbly

Sep 18, 2012

Gerard Liger-Belair lives in a bubble, and he doesn't care who knows it. Bubbles are his passion. And they have given the 41-year-old French scientist arguably the best job in all of physics.

Researchers: Champagne's aroma comes from bubbles

Sep 28, 2009

(AP) -- Don Ho was right. It is the tiny bubbles. A team of researchers - in Europe not surprisingly - found that Champagne's bursting bubbles not only tickle the nose, they create a mist that wafts the aroma to the drinker.

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.