Progress in the fight against quantum dissipation

Apr 16, 2014
Progress in the fight against quantum dissipation
Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude.

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. They report their results in the April 17 issue of the journal Nature.

High-quality quantum switches are essential for the development of quantum computers and the quantum internet—innovations that would offer vastly greater information processing power and speed than classical (digital) computers, as well as more secure information transmission.

"Fighting dissipation is one of the main goals in the development of quantum hardware," said Ioan Pop, a postdoctoral researcher in applied physics at Yale and lead author of the paper. "A quantum switch needs to act reversibly without losing any energy. Our result is very encouraging for the development of superconducting acting as switches."

Superconducting quantum bits, or qubits, are artificial atoms that represent information in quantum systems. They also manipulate that information as they switch among states—such as "0," "1," or both simultaneously—under the influence of other qubits. But in switching states, they tend to lose energy, resulting in information loss.

In the Yale experiment, researchers demonstrated that a type of superconducting quantum bit can be immune to dissipation in presence of a quasiparticle—a microscopic entity that normally saps the energy of the qubit.

"We can engineer a system that is immune to quasiparticle dissipation," Pop said.

The researchers used an artificial fluxonium atom as their qubit.

The experiment confirms by direct measurement a theoretical prediction made by Nobel Prize-winning British physicist Brian Josephson in the 1960s, namely that quasiparticle dissipation should vanish under certain conditions. Josephson junctions are superconducting devices with properties well suited for building quantum processing systems.

The results open new frontiers in areas related to quantum information and quantum measurements, the researchers said, providing both a strategy for building dissipation-immune quantum systems and a specific new device that could be adapted for better measuring properties of quasiparticles and understanding their origin and dynamics.

Explore further: Physics researchers provide new insights into quantum dynamics and quantum chaos

More information: The paper is titled "Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles." DOI: 10.1038/nature13017

add to favorites email to friend print save as pdf

Related Stories

At Yale, quantum computing is a (qu)bit closer to reality

Feb 15, 2012

(PhysOrg.com) -- Physicists at Yale University have taken another significant step in the development of quantum computing, a new frontier in computing that promises exponentially faster information processing ...

In quantum computing, light may lead the way

Oct 08, 2013

(Phys.org) —Light might be able to play a bigger, more versatile role in the future of quantum computing, according to new research by Yale University scientists.

Recommended for you

Entanglement made tangible

20 hours ago

EPFL scientists have designed a first-ever experiment for demonstrating quantum entanglement in the macroscopic realm. Unlike other such proposals, the experiment is relatively easy to set up and run with existing semiconductor ...

Putting the squeeze on quantum information

Sep 25, 2014

Canadian Institute for Advanced Research researchers have shown that information stored in quantum bits can be exponentially compressed without losing information. The achievement is an important proof of principle, and could ...

Are weak values quantum? Don't bet on it

Sep 24, 2014

(Phys.org) —New work asserts that a key technique used to probe quantum systems may not be so quantum after all, according to Perimeter postdoctoral researcher Joshua Combes and his colleague Christopher ...

User comments : 0