A protein required for integrity of induced pluripotent stem cells

Apr 21, 2014
This image shows chromosome abnormalities in reprogrammed cells in which SIRT1 protein has been removed (in red). Credit: Centro Nacional de Investigaciones Oncologicas

Cell reprogramming converts specialised cells such as nerve cells or skin cells towards an embryonic stem cell state. This reversal in the evolutionary development of cells also requires a reversal in the biology of telomeres, the structures that protect the ends of chromosomes; whilst under normal conditions telomeres shorten over time, during cell reprogramming they follow the opposite strategy and increase in length.

A study published today in the journal Stem Cell Reports, from the Cell Publishing Group, reveals that the SIRT1 protein is needed to lengthen and maintain during cell reprogramming. SIRT1 also guarantees the integrity of the genome of that come out of the cell reprogramming process; these cells are known as iPS cells (induced Pluripotent Stem cells).

The study has been carried out by the Spanish National Cancer Research Centre's Telomeres and Telomerase Group, in collaboration with the CNIO's Transgenic Mice Core Unit.

Since the Japanese scientist Shinya Yamanaka first obtained iPS cells from adult tissue in 2006, regenerative medicine has become one of the most exciting and rapidly developing fields in biomedicine. There is a very ambitious aim, given the ability to differentiate iPS cells into any type of cell; this would allow for the regeneration of organs damaged by diseases such as Alzheimer, diabetes or cardiovascular diseases.

The nature of iPS cells however is causing intense debate. The latest research shows that chromosome aberrations and DNA damage can accumulate in these cells. "The problem is that we don't know if these cells are really safe", says María Luigia De Bonis, a postdoctoral researcher of the Telomeres and Telomerase Group who has done a large part of the work.

In 2009, the same CNIO laboratory discovered that telomeres increase in length during cell reprogramming (Marion et al., Cell Stem Cell, 2009); this increase is important as it allows stem cells to acquire the immortality that characterises them.

One year later, it was demonstrated that the levels of SIRT1— a protein belonging to the sirtuin family and that is involved in the maintenance of telomeres, genomic stability and DNA damage response—are increased in . The question CNIO researchers asked was: is SIRT1 involved in cell reprogramming?

Safer stem cells

Employing mouse models and cell cultures as research tools in which SIRT1 had been removed, the team has discovered that this protein is necessary for reprogramming to occur correctly and safely."We observed cell reprogramming in the absence of SIRT1, but over time the produced iPS cells lengthen telomeres less efficiently and suffer from chromosome aberrations and DNA damage," says De Bonis. "SIRT1 helps iPS cells to remain healthy," she concludes.

The authors describe how this protective effect on iPS cells is, in part, mediated by the cMYC regulator. SIRT1 slows the degradationof cMYC, which results in an increase in telomerase (the enzyme that increases telomere length) in cells.

The study sheds light on how guarantees the healthy functioning of stem cells. This knowledge will help to overcome barriers that come out of the use of iPS cells so they may be used in regenerative medicine.

Explore further: Carcinogenic mechanism of incomplete cell reprogramming in vivo

add to favorites email to friend print save as pdf

Related Stories

Embryonic stem cells: Reprogramming in early embryos

Mar 26, 2014

An Oregon Health & Science University scientist has been able to make embryonic stem cells from adult mouse body cells using the cytoplasm of two-cell embryos that were in the "interphase" stage of the cell ...

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011

In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and id ...

Recommended for you

Some anti-inflammatory drugs affect more than their targets

14 hours ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

User comments : 0