Physics researchers provide new insights into quantum dynamics and quantum chaos

Apr 02, 2014 by William G. Gilroy

(Phys.org) —A team of researchers led by University of Notre Dame physicist Boldizsar Janko has announced analytical prediction and numerical verification of novel quantum rotor states in nanostructured superconductors.

The international collaborative team points out that the classical rotor, a macroscopic particle of mass confined to a ring, is one of the most studied systems in classical mechanics. In a paper appearing in the April 1 issue of the journal Nature Scientific Reports, Janko and colleagues Shi-Hsin Lin, Milorad Milosevic, Lucian Covaci and Francois Peeters of the Universiteit Antwerpen in Belgium described how the of quasiparticles in several classes of nanostructured superconductors can be mapped onto a quantum rotor. These results are the culmination of a nearly decade-long collaboration started in 2005, when Milosevic, Covaci and Peeters were visiting fellows of Notre Dame's Institute for Theoretical Sciences and Lin was a graduate student in Notre Dame's Department of Physics.

Besides being a remarkable example of a quantum analogue of a classical system, the superconducting rotor has a number of significant characteristics. It can be realized in a broad range of superconducting systems and has a tunable inertia and gravitational field. It also can be externally manipulated through effective tilt, pulsed gravity and pivot oscillations and can be converted to a quantum pendulum or be driven to a chaotic regime.

This realization of the quantum rotor therefore has the potential to provide insights into a variety of phenomena, which will be the focus of further experimental and theoretical investigation, possibly leading to practical applications such as advanced detectors.

Explore further: Quantum computers could greatly accelerate machine learning

More information: "Quantum rotor in nanostructured superconductors." Shi-Hsin Lin, et al. Scientific Reports 4, Article number: 4542 DOI: 10.1038/srep04542. Received 04 November 2013 Accepted 17 February 2014 Published 01 April 2014

Related Stories

Breaking the limits of classical physics

Jun 07, 2012

(Phys.org) -- With simple arguments, researchers show that nature is complicated. Researchers from the Niels Bohr Institute have made a simple experiment that demonstrates that nature violates common sense ...

Recommended for you

Scientists succeed in linking two different quantum systems

Mar 30, 2015

Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.