New research could improve pharmaceuticals testing

Apr 30, 2014

A UT Arlington chemistry professor, renowned for his work in the area of chemical separations, is leading an effort to find a more accurate way to measure water content in pharmaceuticals – a major quality issue for drug manufacturers.

Daniel W. Armstrong, UT Arlington's Robert A. Welch Chair in Chemistry, says the new technique could be 100 times more sensitive than one of the most popular current methods.

"The analysis for water in many consumer products, including drugs, is one of the most required tests done in the world," said Armstrong. "Current methods have many shortcomings, including poor sensitivity and reproducibility; they cannot be used for all products and they can be time consuming. I believe our new 'ionic liquid' method offers improvements in all these areas."

Armstrong and two graduate students recently wrote about their new research in a paper that will be in the June issue of the Journal of Pharmaceutical and Biomedical Analysis. The publication describes using headspace gas chromatography and an ionic liquid gas chromatography column Armstrong's lab developed to measure in such as ibuprofen, tetracycline and ephedrine. Water content can affect the stability and shelf life of a drug and, when it is too high, cause microbial growth, according to the paper.

Chromatography is the process of separating a chemical mixture to measure its components. Headspace gas chromatography, or HSGC, involves the measuring of volatile analytes, or chemical components, as they diffuse into a "headspace" at the top of a tube of sample, including solids. The new method combines HSGC with the use of . Ionic liquids consist of a mixture of positively and negatively charged molecules. They have a variety of advantages as solvents.

Currently, two methods are most commonly used to measure moisture content. One is called weight loss on drying, or LOD; the other is called Karl Fischer Titration, or KFT. The newly described work from Armstrong's lab is useful on more types of drug ingredients than LOD and is more than 100 times more sensitive in some cases than KFT. It also can be used for much smaller samples and be automated, the paper said.

Graduate student Lillian A. Frink is lead author on the paper and Choyce A. Weatherly, also a graduate student in Armstong's lab, is a co-author.

"We think industry will utilize this method based on its broad applicability, its high accuracy, and the sample size requirements," said Frink. "It also doesn't have side-reactions like current methods, which make them inaccurate."

Armstrong has been a leader in the characterizing and synthesizing ionic liquids. He also holds patents on several open tubular capillary columns that utilize ionic liquids, including those used in the current research.

Explore further: Biosensor may improve clinical diagnosis of influenza A

More information: The newly published paper is called "Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols." It is available here: http://www.ncbi.nlm.nih.gov/pubmed/24561336.

Related Stories

Recommended for you

Devices designed to identify pathogens in food

1 hour ago

Researchers at the National Polytechnic Institute (IPN) in Mexico have developed a technology capable of identifying pathogens in food and beverages. This technique could work in the restaurant industry as ...

Biosensor may improve clinical diagnosis of influenza A

3 hours ago

Sensors based on special sound waves known as surface acoustic waves (SAWs) are capable of detecting tiny amounts of antigens of Influenza A viruses. Developed by A*STAR researchers, the biosensors have the ...

New chip makes testing for antibiotic-resistant bacteria faster, easier

20 hours ago

We live in fear of 'superbugs': infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-re ...

Use your smartphone for biosensing

May 26, 2015

An Australian research team has shown that smartphones can be reconfigured as cost-effective, portable bioanalytical devices, with details reported in the latest edition of the Open Access Journal 'Sensors'.

Faster, portable microbial analysis in the field

May 25, 2015

Until recently, it took hours – sometimes days – to analyze biological samples after they were frozen in the field and brought back to the laboratory. But now there is a faster, cheaper and smaller way ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.