With neutrons, scientists can now look for dark energy in the lab

Apr 16, 2014
This is a gravity resonance spectrometer at the Vienna University of Technology. Credit: TU Vienna

It does not always take a huge accelerator to do particle physics: First results from a low energy, table top alterative takes validity of Newtonian gravity down by five orders of magnitude and narrows the potential properties of the forces and particles that may exist beyond it by more than one hundred thousand times. Gravity resonance spectroscopy, a method developed at the Vienna University of Technology, is so sensitive that it can now be used to search for Dark Matter and Dark Energy.

All the particles we know to exist make up only about five per cent of the mass and energy of the universe. The rest – "Dark Matter" and "Dark Energy" – remains mysterious. A European collaboration lled by researchers from the Vienna University of Technology has now carried out extremely sensitive measurements of gravitational effects at very small distances at the Institut Laue-Langevin (ILL) in Grenoble. These experiments provide limits for possible new particles or fundamental forces, which are a hundred thousand times more restrictive than previous estimations.

Undiscovered Particles?

Dark matter is invisible, but it acts on matter by its gravitational pull, influencing the rotation of galaxies. Dark energy, on the other hand, is responsible for the accelerated expansion of the universe. It can be described by introducing a new physical quantity - Albert Einstein's Cosmological Constant. Alternatively, so-called quintessence theories have been put forward: "Perhaps empty space is not completely empty after all, but permeated by an unknown field, similar to the Higgs-field", says Professor Hartmut Abele (TU Vienna), director of the Atominstitut and group leader of the research group. These theories are named after Aristotle's "quintessence" – a hypothetical fifth element, in addition to the four classical elements of ancient Greek philosophy.

If new kinds of particles or additional forces of nature exist, it should be possible to observe them here on earth. Tobias Jenke and Hartmut Abele from the Vienna University of Technology developed an extremely sensitive instrument, which they used together with their colleagues to study gravitational forces. Neutrons are perfectly suited for this kind of research. They do not carry electric charge and they are hardly polarizable. They are only influenced by gravity – and possibly by additional, yet unknown forces. Theoretical calculations analysing the behaviour of the were done by Larisa Chizhova, Professor Stefan Rotter and Professor Joachim Burgdörfer (TU Vienna). U. Schmidt from Heidelberg University and T. Lauer from TU Munich contributed with an analytic tool.

Neutrons between parallel plates can test hypothetical forces in the universe. Credit: TU Vienna

Forces at Small Distances

The technique they developed takes very slow neutrons from the strongest continuous ultracold neutron source in the world, at the ILL in Grenoble and funnels them between two parallel plates. According to quantum theory, the neutrons can only occupy discrete quantum states with energies which depend on the force that gravity exerts on the particle. By mechanically oscillating the two plates, the quantum state of the neutron can be switched. That way, the difference between the energy levels can be measured.

"This work is an important step towards modelling gravitational interactions at very short distances. The ultracold neutrons produced at ILL together with the measurement devices from Vienna are the best tool in the world for studying the predicted tiny deviations from pure Newtonian gravity", says Peter Geltenbort (ILL Grenoble).

Different parameters determine the level of precision required to find such tiny deviations – for instance the coupling strength between hypothetical new fields and the matter we know. Certain parameter ranges for the coupling strength of quintessence particles or forces have already been excluded following other high-precision measurements. But all previous experiments still left a large parameter space in which new physical non-Newtonian phenomena could be hidden.

Certain hypothetical fields scientists are now looking for have been called 'Chameleon fields.' Credit: TU Vienna

A Hundred Thousand Times Better than Other Methods

The new neutron method can test theories in this parameter range: "We have not yet detected any deviations from the well-established Newtonian law of gravity", says Hartmut Abele. "Therefore, we can exclude a broad range of parameters." The measurements determine a new limit for the coupling strength, which is lower than the limits established by other methods by a factor of a hundred thousand.

Even if the existence of certain hypothetical quintessence particles is disproved by these measurements, the search will continue as it is possible that new physics can still be found below this improved level of accuracy. Therefore, Gravity Resonance Spectroscopy will need to be improved further - and increasing the accuracy by another few orders of magnitude seems feasible to the Abele's team. However, if even that does not yield any evidence of deviations from known forces, Albert Einstein would win yet another victory: his cosmological constant would then appear more and more plausible.

The study is published in Physical Review Letters.

Explore further: Now it is more likely than ever: There must be particles out there smaller than Higgs particle

add to favorites email to friend print save as pdf

Related Stories

Probing the laws of gravity: A gravity resonance method

Apr 18, 2011

Quantum mechanical methods can now be used to study gravity: At the Vienna University of Technology (TU Vienna), a measurement method was developed, which allows to test the fundamental theories of physics.

Dark energy hides behind phantom fields

Mar 26, 2014

Quintessence and phantom fields, two hypotheses formulated using data from satellites, such as Planck and WMAP, are among the many theories that try to explain the nature of dark energy. Now researchers from ...

Neutrons escaping to a parallel world?

Jun 15, 2012

In a paper recently published in European Physical Journal C, researchers hypothesised the existence of mirror particles to explain the anomalous loss of neutrons observed experimentally. The existence of such mirror matter ...

Recommended for you

Chemist develops X-ray vision for quality assurance

21 minutes ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

30 minutes ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

17 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

19 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

20 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

shavera
5 / 5 (6) Apr 16, 2014
Here's the paper physorg didn't provide: http://journals.a...2.151105
shavera
5 / 5 (6) Apr 16, 2014
And when they're saying deviations from "Newtonian gravity" they mean from the approximation you can make that on very short scales, gravitational potential is linear as a function of height. So they aren't here testing the intersection of General Relativity and Newtonian Gravitation (just as a note for any others interested)
yyz
5 / 5 (3) Apr 17, 2014
Here's a link to a (nonpaywalled) preprint of the PRL paper shavera mentions: http://arxiv-web3...404.4099

(Thanks for the heads up shavera)