NASA's space station Robonaut finally getting legs

Apr 19, 2014 by Marcia Dunn
This Nov. 13, 2013 photo made available by NASA shows the Robonaut with legs at a lab in Houston. Each leg, 4 feet, 8 inches long when straight, has seven joints. Instead of feet, there are grippers. Each gripper, or foot, has a light, camera and sensor for building 3-D maps. (AP Photo/NASA, Bill Stafford, James Blair)

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck on a pedestal—is going mobile at the International Space Station.

"Legs are going to really kind of open up the robot's horizons," said Robert Ambrose from NASA's Johnson Space Center in Houston.

It's the next big step in NASA's quest to develop robotic helpers for astronauts. With , the 8-foot (2.4-meter) Robonaut will be able to climb throughout the 260-mile (420-kilometer)-high outpost, performing mundane cleaning chores and fetching things for the human crew.

The robot's gangly, contortionist-bending legs are packed aboard a SpaceX supply ship that launched Friday, more than a month late. It was the private company's fourth shipment to the for NASA and is due to arrive Easter Sunday morning.

Robonaut 2—R2 for short—has been counting down the days.

"Legs are on the way!" read a message Friday on its Twitter account, @AstroRobonaut. (OK, so it's actually a Johnson Space Center spokesman who's doing the tweeting.)

Space Exploration Technologies Corp.'s unmanned capsule, Dragon, holds about 2 tons of space station supplies and experiments, including Robonaut's legs.

Until a battery backpack arrives on another supply ship later this year, the multimillion-dollar robot will need a power extension cord to stretch its legs, limiting its testing area to the U.S. side of the space station. Testing should start in a few months.

Each leg—4 feet, 8 inches (142 centimeters) long—has seven joints. Instead of feet, there are grippers, each with a light, camera and sensor for building 3-D maps.

"Imagine monkey feet with eyes in the palm of each foot," Ambrose said.

NASA engineers based the design on the tether attachments used by spacewalking astronauts. The legs cost $6 million to develop and another $8 million to build and certify for flight. The torso with head and arms delivered by space shuttle Discovery in 2011 on its final flight cost $2.5 million, not counting the untold millions of dollars spent on development and testing.

Ambrose acknowledges the legs are "a little creepy" when they move because of the number of joints and the range of motion.

"I hope my knee never bends that many degrees, but Robonaut has no problems at all," said Ambrose, chief of software, robotics and simulation division at Johnson.

The grippers will latch onto handrails inside the space station, keeping Robonaut's hands free for working and carrying things. Expect slow going: just inches a second. If Robonaut bumps into something, it will pause. A good shove will shut it down.

"The robot's not going to have as much fun as the astronauts," Ambrose said. "No jumping, no somersaults, no flying."

Robonaut already has demonstrated it can measure the flow on air filters, "a really crummy job for humans," Ambrose said. Once mobile, it can take over that job around the station.

How about cleaning the space station toilets? "I have a feeling that's in Robonaut's future," Ambrose said.

This robot will stay indoors as it learns how to climb. The next-generation model, currently in development and targeted for a 2017 launch, will venture outside on spacewalks. That's where the real payoff lies.

A robot doesn't need oxygen tanks and fancy spacesuits. A robot never tires or gets bored. Why, a robot could stay out in the vacuum of space for days, weeks or even months, clinging to the station. Human spacewalkers are limited to eight or nine hours.

Now imagine base camps on the moon, Mars or beyond staffed by a team of robotic caretakers. Future Robonauts could be deployed in advance and get everything running before the humans arrive—and stay behind when they leave.

And if there's a chore too risky for humans "we could let the machine go out and sacrifice itself," Ambrose said, "and that's OK. It's not human. We can build another one. We'll build one even better."

NASA's space station program manager, Mike Suffredini, cautioned Friday that there's still "quite a ways to go" before future Robonauts make spacewalk repairs like the computer replacement job coming up Wednesday for the two U.S. space station astronauts. Software is the biggest challenge, he said, but "these are great first steps."

"They won't ever replace the crews, but they could do a lot of the jobs," Suffredini said.

Explore further: Robonaut 2 set to move freely about space station

4.4 /5 (7 votes)
add to favorites email to friend print save as pdf

Related Stories

Robonaut 2 set to move freely about space station

Mar 14, 2014

Legs—yes, legs—are on the manifest for the next SpaceX Dragon flight. The commercial spacecraft is expected to blast off March 16 with appendenges for Robonaut 2 on board, allowing the humanoid to move ...

NASA to add legs to giant robonaut aboard the ISS

Nov 11, 2013

(Phys.org) —NASA has announced its intention to add legs to the Robonaut 2 (R2) robot currently aboard the International Space Station (ISS), sometime next year. The move is part of a 50 year project (currently in year 17) ...

Recommended for you

Amazing raw Cassini images from this week

4 hours ago

When Saturn is at its closest to Earth, it's three-quarters of a billion miles away—or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Europe launches two navigation satellites

4 hours ago

Two satellites for Europe's rival to GPS were lifted into space on Friday to boost the Galileo constellation to six orbiters of a final 30, the European Space Agency (ESA) said.

SpaceX gets 10-year tax exemption for Texas site

5 hours ago

Cameron County commissioners have agreed to waive 10 years of county taxes as part of an agreement bringing the world's first commercial site for orbital rocket launches to the southernmost tip of Texas.

Voyager map details Neptune's strange moon Triton

6 hours ago

(Phys.org) —NASA's Voyager 2 spacecraft gave humanity its first close-up look at Neptune and its moon Triton in the summer of 1989. Like an old film, Voyager's historic footage of Triton has been "restored" ...

How the sun caused an aurora this week

7 hours ago

On the evening of Aug. 20, 2014, the International Space Station was flying past North America when it flew over the dazzling, green blue lights of an aurora. On board, astronaut Reid Wiseman captured this ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

Lex Talonis
2 / 5 (2) Apr 19, 2014
How will they keep the cameras clean - from things like rain, mud and dust - without wipers?

That thing will be having Turrets Syndrome trying to get around with dirt in it's eyes.
JohnGee
5 / 5 (1) Apr 19, 2014
...It has hands. Those are the wipers.

It rains in space?
Sinister1812
not rated yet Apr 20, 2014
Looks like they're giving him arms for legs..
alfie_null
5 / 5 (1) Apr 20, 2014
How far from humanoid form are they willing to go? Does it need a head? How about just a torso with a bunch of extensions radiating from it? Some for mobility, some for manipulating things, some for sensing, viewing, etc. Give all these extensions a bunch of joints, make them serpentine. So what if initially it looks creepy. As it demonstrates its utility, creepy will become cool.
TheGhostofOtto1923
3 / 5 (2) Apr 20, 2014
Probably this would be a better form factor.
http://www.wired....-action/