Multifunctional microcapsules made from metals and tannic acid

April 15, 2014

( —Microcapsules with a broad spectrum of applications in biomedicine, catalysis, and technology can be produced by using plant-derived, phenolic tannic acid and a variety of metals. The capsules are formed by a simple self-assembly process, and their properties can be controlled through the choice of metal, as demonstrated by a team of Australian and German researchers in the journal Angewandte Chemie.

Metals and organic molecules can combine to form coordination compounds whose structure and properties depend on the components. Examples from nature include the oxygen-binding heme groups in our with their central iron atom or the magnesium complex at the heart of photosynthesis. Scientists have also explored the use of these types of compounds to build things, such as networked scaffold structures. A team from the University of Melbourne, the Baker IDI Heart and Diabetes Institute (Melbourne, Australia), and the University Medical Center Freiburg (Germany), is particularly interested in structures in the form of hollow capsules. Led by Frank Caruso, these researchers haven now been able to demonstrate that a single organic ligand, tannic acid, can coordinate to 18 different metals to form capsules made of metal–phenolic networks (MPNs). The metals are aluminum, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, ruthenium, rhodium, cadmium, cerium, europium, gadolinium, and terbium.

The production method is simple: just mix tannic acid with a solution of the desired metal ion in the presence of a suitable substrate—in this case microparticles. Removal of the substrate leaves behind hollow microcapsules.

The properties of the capsules depend on the type and number of ions. For example, capsules with aluminum have a property profile suitable for drug transport: while they are relatively stable at pH values typical of blood, they come apart at the lower pH values found in some cell compartments. They could thus be used to transport a drug though the blood and release it after entering a cell.

Capsules with europium and terbium ions can be used for multicolored fluorescence labeling of biological samples, as well as for technological applications like flexible color displays. Capsules with manganese are highly promising contrast agents for magnetic resonance imaging (MRI). Capsules with radioactive copper isotopes are good tracers for positron emission tomography (PET). Properties like size, shape, and surface chemistry could be tailored to control the distribution of the capsules in the body. Capsules with radioactive copper and europium could allow for tissue samples to undergo PET followed immediately by fluorescence microscopy.

Catalysis is another possible application. The researchers were able to show that with rhodium catalyze the hydrogenation of quinoline at least as well as conventional rhodium catalysts.

Explore further: Fabrication of new elastic 'soft capsule' using nano-sized flakes

More information: Guo, J., Ping, Y., Ejima, H., Alt, K., Meissner, M., Richardson, J. J., Yan, Y., Peter, K., Elverfeldt, D. v. , Hagemeyer, C. E. and Caruso, F. (2014), "Engineering Multifunctional Capsules through the Assembly of Metal–Phenolic Networks." Angew. Chem. Int. Ed.. DOI: 10.1002/anie.201311136

Related Stories

Researchers develop blue-fluorescent molecular nanocapsules

July 13, 2012

Michito Yoshizawa, Zhiou Li, and collaborators at Tokyo Institute of Technology synthesized ~1 nanometer-sized molecular capsules with an isolated cavity using green and inexpensive zinc and copper ions. In sharp contrast ...

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 15, 2014
Awesome work! It can be used to coat any materials with different metals. These metals can transform to metal oxides! I can see infinite potentials! Very interesting work.
not rated yet Apr 16, 2014
This is so interesting. Nature gives us so many possibilities to discover.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.