Inspired by moth eyeballs, chemists develop gold coating that dims glare

Apr 04, 2014
Moth eyeballs are made up of tiny cones that reduce glare. UC Irvine researchers copied the pattern on a new, flexible material and coated it with a bit of gold to make a product that could improve solar panels, LED displays and disguising of weapons. Credit: George Hodan

(Phys.org) —All that's gold does not glitter, thanks to new work by UC Irvine scientists that could reduce glare from solar panels and electronic displays and dull dangerous glints on military weapons.

"We found that a very simple process and a tiny bit of can turn a black," said UC Irvine chemistry professor Robert Corn, whose group has created a patterned polymer material based on the findings, documented in recent papers. The postdoctoral associates and students were initially worried when they noticed what appeared to be soot on a flexible film they were designing to coat various products.

Via painstaking tests, though, the researchers realized that they'd accidentally discovered a way to fabricate a surface capable of eliminating glare, as reported in Nano Letters. They also learned that the material can keep grime in raindrops and other moisture from sticking, as reported in ACS Applied Materials & Interfaces.

To do it, the group etched a repeating pattern of cones modeled on moth eyeballs at the nanoscale on Teflon and other nonstick surfaces. They then applied a thin layer of gold over the cones and, voila, the shine from the gold and any light reflecting onto it was all but obliterated. The material is also highly hydrophobic, meaning it repels liquids.

This video is not supported by your browser at this time.

Angry residents of Newport Beach, Calif.; certain cities in England and Australia; and elsewhere have complained vociferously about neighbors installing highly reflective that unintentionally beam blinding sunlight onto their properties. In addition, troops risk enemy detection when sunshine bounces off weaponry. And cellphone displays can be unreadable in bright light. The new coating could solve these issues.

UC Irvine's Office of Technology Alliances has filed a patent application for the work. "We're excited about where this technology might lead and who could be interested in exploring the commercial opportunities that this new advancement presents," said senior licensing officer Doug Crawford.

Explore further: Shining a little light changes metal into semiconductor

add to favorites email to friend print save as pdf

Related Stories

Power boosting self-cleaning solar panels

Nov 22, 2013

High-power, self-cleaning solar panels might be coming soon to a roof near you. There are two obvious problems with photovoltaic cells, solar panels. First, they are very shiny and so a lot of the incident sunlight is simply ...

Recommended for you

Graphene reinvents the future

10 hours ago

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

(Phys.org) —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

Copper shines as flexible conductor

Aug 22, 2014

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

User comments : 0