Mars' halcyon times may have been fleeting

April 13, 2014 by Richard Ingham
This NASA image obtained March 13, 2014 shows a sand dune field in a Southern highlands crater on Mars

Cold and dry today, Mars was previously warm and wet but possibly only at intervals, a study published on Sunday suggests.

Scientists have long puzzled over what happened to the , the precious stuff of life, on the Red Planet.

Unmanned spacecraft have sent home tantalising images of gouged canyons, valleys and sedimentary deltas, while landers have found hydrous rocks, all suggesting Mars at one time hosted hundreds of kilometres (miles) of rivers and lakes.

Today, though, Mars is too cold and the pressure of its carbon-dioxide way too low for liquid H2O to exist. If you tried to pour water on its surface, it would simultaneously freeze and vaporise.

So when did Mars host liquid water? And what happened to it?

In a study published in the journal Nature Geoscience, planetary geologist Edwin Kite of the California Institute of Technology takes a new stab at the riddle.

Kite and his team measured craters, left on the Martian surface by asteroid collisions, to gain an idea of its past atmospheric pressure.

The principle behind their calculation is this: the thicker the atmosphere, the bigger the space rock has to be in order to survive the friction of contact with it.

Conversely, a thinner atmosphere means that smaller rocks are able to survive the descent and whack the surface.

Kite's team looked at 319 craters in Aeolis Dorsa, a 3.6-billion-year-old region that shows evidence of past rivers to get an indication.

Mystery of flowing water

They calculated that these craters were formed when Mars had of up to 0.9 bar.

This pressure is 150 times greater than that of today and intriguingly close to that of the water-rich Planet Earth at sea level.

The bad news, though, is that Mars is far more distant from the Sun than Earth and at that far-off time, our star was much less bright than now.

As a result, Mars would have required pressures of at least five bar for its surface to keep above the of water. It seems to have lacked a long-lasting thick atmosphere during its river period.

"If Mars did not have a stable multi-bar atmosphere at the time that the rivers were flowing—as suggested by our results—then a warm and wet CO2/H2O greenhouse is ruled out, and long-term average temperatures were most likely below freezing," said the study.

This throws up other possible explanations for the water, said Sanjoy Som of NASA Ames Research Center in a commentary published in the same journal.

One is that the water was high in acidity and salt content, giving it a lower freezing point and enabling it survive as a liquid in lower air pressure.

Another is that greenhouse gases from volcanic eruptions helped Mars, for a while, to have a denser atmosphere that enabled the water to flow.

Another possibility is "transient intervals" of denser atmosphere caused by the planet's tilt, said Som.

Like a child's top that is slightly off centre, Mars tilts slowly around its axis of spin.

It takes 120,000 years to complete one axial revolution, a timescale that leads to major changes in the amount of sunlight reaching its poles, whose water either froze to form ice-sheets or warmed to "reinflate" the atmosphere and form rivers that flowed at kinder times.

Explore further: Sputtering: How mars may have lost its atmosphere

More information: Nature paper: Low palaeopressure of the martian atmosphere estimated from the size distribution of ancient craters, www.nature.com/doifinder/10.1038/ngeo2137

Related Stories

Sputtering: How mars may have lost its atmosphere

September 13, 2012

Why is Mars cold and dry? While some recent studies hint that early Mars may have never been wet or warm, many scientists think that long ago, Mars once had a denser atmosphere that supported liquid water on the surface. ...

Is life on Mars related to life on Earth?

July 31, 2013

The idea that there is life on other worlds is humbling and exciting, and finding life on another world would change everything. This has been a driving force for scientists for decades. We find life wherever we find water ...

What happened to Mars? A planetary mystery

November 13, 2013

Billions of years ago when the planets of our solar system were still young, Mars was a very different world. Liquid water flowed in long rivers that emptied into lakes and shallow seas. A thick atmosphere blanketed the ...

Hunt for water intensifies—on two planets

March 17, 2014

(Phys.org) —Scientists are using a promising new theory to track down hidden water both on Earth – where fresh water is becoming dangerously scarce in some regions – and in the quest for life on the red planet, Mars.

Recommended for you

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

marble89
not rated yet Apr 13, 2014
If the ancient sun was as dim as astrophysicist claim it makes one wonder if a CO2 atmosphere on a Mars like planet would be prone to collapse. If the author is correct, and Mars DID have an atmosphere 3 times as massive as earth ( column abundance corrected for reduced gravity) atmospheric collapse would result in regional CO2 glaciation. A simple calculation suggests liquid CO2 might be stable beneath an ice sheet >100m thick.
cantdrive85
1 / 5 (4) Apr 14, 2014
Mystery of flowing water


And maybe water never flowed on Mars, mystery solved.
Osiris1
not rated yet Apr 15, 2014
It is called precession, like a child's top. Any ideas on how to speed it up?.......and then slow it down again when we near our preferred setting.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.