Magnetic anomaly deep within Earth's crust reveals Africa in North America

Apr 02, 2014
April-May GSA Today cover image. Credit: Geological Society of America

The repeated cycles of plate tectonics that have led to collision and assembly of large supercontinents and their breakup and formation of new ocean basins have produced continents that are collages of bits and pieces of other continents. Figuring out the origin and make-up of continental crust formed and modified by these tectonic events is a vital to understanding Earth's geology and is important for many applied fields, such as oil, gas, and gold exploration.

In many cases, the rocks involved in these collision and pull-apart episodes are still buried deep beneath the Earth's surface, so geologists must use geophysical measurements to study these features.

This new study by Elias Parker Jr. of the University of Georgia examines a prominent swath of lower-than-normal magnetism—known as the Brunswick Magnetic Anomaly—that stretches from Alabama through Georgia and off shore to the North Carolina coast.

The cause of this magnetic anomaly has been under some debate. Many geologists attribute the Brunswick Magnetic Anomaly to a belt of 200 million year old volcanic rocks that intruded around the time the Atlantic Ocean. In this case, the location of this magnetic anomaly would then mark the initial location where North America split from the rest of Pangea as that ancient supercontinent broke apart. Parker proposes a different source for this anomalous magnetic zone.

Drawing upon other studies that have demonstrated deeply buried can also have a coherent magnetic signal, Parker has analyzed the detailed characteristics of the magnetic anomalies from data collected across zones in Georgia and concludes that the Brunswick Magnetic Anomaly has a similar, deeply buried source. The anomalous magnetic signal is consistent with an older tectonic event—the Alleghanian orogeny that formed the Alleghany-Appalachian Mountains when the supercontinent of Pangea was assembled.

Parker's main conclusion is that the rocks responsible for the Brunswick Magnetic Anomaly mark a major fault-zone that formed as portions of Africa and North America were sheared together roughly 300 million years ago—and that more extensive evidence for this collision are preserved along this zone. One interesting implication is that perhaps a larger portion of what is now Africa was left behind in the American southeast when Pangea later broke up.

Explore further: Solving the Midwest's biggest geologic mystery

More information: Crustal magnetism, tectonic inheritance, and continental rifting in the southeastern United States, E.H. Parker, Jr., GSA Today, v. 24, no. 4-5, p. 4-9; DOI: 10.1130/GSAT-G192A.1 . http://www.geosociety.org/gsatoday/archive/24/4/article/i1052-5173-24-4-4.htm

add to favorites email to friend print save as pdf

Related Stories

Curvy mountain belts

Jun 29, 2012

Mountain belts on Earth are most commonly formed by collision of one or more tectonic plates. The process of collision, uplift, and subsequent erosion of long mountain belts often produces profound global effects, including ...

Under California: An ancient tectonic plate

Mar 18, 2013

(Phys.org) —The Isabella anomaly—indications of a large mass of cool, dehydrated material about 100 kilometers beneath central California—is in fact a surviving slab of the Farallon oceanic plate. Most ...

Solving the Midwest's biggest geologic mystery

Mar 11, 2014

(Phys.org) —Geologists from Northwestern University, the University of Illinois at Chicago, the University of Oklahoma and Purdue University have a new explanation for the Midwest's biggest geologic mystery: ...

Recommended for you

Questions of continental crust

2 hours ago

Geological processes shape the planet Earth and are in many ways essential to our planet's habitability for life. One important geological process is plate tectonics – the drifting, colliding and general ...

Better forecasts for sea ice under climate change

Nov 25, 2014

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.