Large-scale identification and analysis of suppressive drug interactions

April 24, 2014

Baker's yeast is giving scientists a better understanding of drug interactions, which are a major cause of hospitalization and illness world-wide.

When two or more medications are taken at the same time, one can suppress or enhance the effectiveness of the other. Similarly, one drug may magnify the toxicity of another. These types of interactions are a major cause of illness and hospitalization. However, there are severe practical limits on the practical scope of drug studies in humans. Limits come in part from ethics and in part from the staggering expense. Because of the vast number of combinations of different drugs that might be prescribed together in the same patient, in patients are not extensively studied, even in the process of reviewing for approval.

This limitation has caused researchers to turn to simpler model organisms in which to study drug interactions, enabling systematic study of drug interactions at relatively low cost, according toresearchers at the Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital in Toronto. Dr. Frederick Roth and international colleagues published their findings after testing drugs on the simple yeast Saccharomyces cerevisiae, also known as brewer's yeast or baker's yeast.

Surprising effect

"Baker's yeast is a wonderful tool for this purpose," says Dr. Roth. "Many aspects of both yeast and human genomes have remained the same since they diverged from a common ancestor around one billion years ago. When a specific combination of drugs has a surprising effect on yeast growth there is no guarantee that it will do the same thing tohuman cells. But it does give us a general idea of how often drugs are able to enhance or suppress each other's effectiveness." Dr. Roth is a Senior Investigator at the Lunenfeld-Tanenbaum and a Professor at the University of Toronto's Donnelly Centre. He also holds a Canada Excellence Research Chair in Integrative Biology.

For this first test, the team worked with anti-fungal chemicals in a total of 440 drug pairs. They found that, in almost one fifth of the combinations, one drug reduced the effectiveness of the other drug. They also found that some drugs can have a greater tendency to suppress other drugs, while other drugs are more frequently suppressed. The same team published a related study in 2011, showing that for about one third of drug pairs tested the compounds increased each other's effectiveness. "If drug interactions are happening at anything approaching these rates in humans, we should be very concerned," Dr. Roth adds.

When one drug suppresses the effectiveness of another drug, "the patient is losing benefit from one or both drugs, while still potentially being exposed to their side effects," Dr. Roth adds. When a drug combination has an effect that is more than the sum of its parts, the patient might get too much of a good thing, and it is possible for drugs to intensify each other's toxicity as well.

"This methodology may also prove useful to explore positive types of interactions such as in personalized medicine," adds Dr. Jim Woodgett, Director of the Lunenfeld-Tanenbaum. "Diseases such as cancer rarely respond to single medications, and this new systematic technological approach may have the potential to allow rapid optimization of combination therapies," he notes. The study noted one example of a compound (Staurosporine) that was suppressed by acidity. This phenomenon is interesting in the context of cancer because the peculiar metabolism of cancer cells often makes the local tumour environment more acidic. It would be particularly exciting to find more anti-cancer compounds that were enhanced by acidity.

Explore further: Yeast study yields potential for new cholesterol, anti-fungal drugs

More information: The paper "Large-scale identification and analysis of suppressive drug interactions" is published in Chemistry & Biology, April 24, 2014.

Related Stories

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.