New light shed on key bacterial immune system

Apr 07, 2014
A scanning electron micrograph of E. coli. Credit: NIH

New insights into a surprisingly flexible immune system present in bacteria for combating viruses and other foreign DNA invaders have been revealed by researchers from New Zealand's University of Otago and the Netherlands.

A team led by Dr Peter Fineran of the Department of Microbiology and Immunology are studying the genetic basis of adaptive immunity in that cause potato 'soft rot' and in E. coli bacteria. Through their recent collaboration they have found that these bacterial immune systems are much more robust and responsive than previously thought.

Their latest findings, which appear in the leading US journal PNAS, have implications for improving our understanding of bacterial evolution, including the spread of .

The researchers are investigating an adaptive immune system, termed CRISPR-Cas, which is found in half of all bacterial species and in almost all single-celled microbes in the archaea domain.

CRISPR-Cas's role in providing immunity was only discovered in the past decade. The system creates a genetic memory of specific past infections by viruses and plasmids, which are small mobile DNA molecules that can move between organisms.

Dr Fineran says the system steals samples of the invader's genetic material and stores them in a memory bank so it can immediately recognise future exposures and neutralise the attack. It can store up to 600 samples and can also pass on these memories to subsequent generations of bacteria.

It had been thought that the system had an Achilles heel because invaders that had acquired too many mutations could no longer be recognised as they did not match the stored sample closely enough.

"What we have now discovered is that while the viruses and plasmids can evade direct recognition by acquiring multiple mutations, the system is primed to quickly generate a new immunity by grabbing a new sample of the mutated ."

"It's a remarkably flexible and robust for such simple single-celled organisms."

Dr Fineran says the system reflected the ancient and continuing co-evolutionary arms race between bacteria on one side, and viruses and plasmids on the other.

Viral infections of bacteria also exert a powerful yet invisible effect on the entire planet, says Dr Fineran.

"Their silent but vast and ongoing war underpins everything from how global nutrient cycles—which rely on bacteria to produce half of the Earth's biomass —operate, to how human pathogens evolve," he says.

"For example, the bacteria that cause cholera and diphtheria have been infected by viruses that provide genes coding for toxins, which converted these bacteria into significant human pathogens."

Plasmids are also key players in moving antibiotic resistance genes between different .

"So, discovering more about exactly how bacterial immune systems combat plasmid transfer and acquisition is of considerable interest," he says.

Explore further: Exploring a microbial arms race

More information: Degenerate target sites mediate rapid primed CRISPR adaptation, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1400071111

add to favorites email to friend print save as pdf

Related Stories

Exploring a microbial arms race

Apr 07, 2014

A rapid evolutionary "arms race" between bacteria and the killer viruses they contain has been observed by a UNSW-led team of scientists in a sophisticated genetic study of the micro-organisms.

Viruses can have immune systems, new research shows

Feb 27, 2013

A study published today in the journal Nature reports that a viral predator of the cholera bacteria has stolen the functional immune system of bacteria and is using it against its bacterial host. The study provides the fi ...

Researchers unlock the secret of bacteria's immune system

Nov 04, 2010

A team of Université Laval and Danisco researchers has just unlocked the secret of bacteria's immune system. The details of the discovery, which may eventually make it possible to prevent certain bacteria from developing ...

The many faces of the bacterial defense system

Apr 30, 2013

Even bacteria have a kind of "immune system" they use to defend themselves against unwanted intruders – in their case, viruses. Scientists at the Helmholtz Center for Infection Research (HZI) in Braunschweig, ...

Researchers clarify bacterial resistance

Jun 24, 2011

Just like plants and animals, bacteria have a range of defence mechanisms against viruses and other threats. Dutch researchers at the Wageningen Laboratory for Microbiology and their American and Russian colleagues have largely ...

Recommended for you

Japanese scientist resigns over stem cell scandal

5 hours ago

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

18 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.