Researchers discover how intestinal cells build nutrient-absorbing surface

Apr 16, 2014
Thousands of finger-like projections form a 'brush border' on the surfaces of cultured epithelial cells. In the intestines, the brush border is responsible for absorbing nutrients and defending against pathogens. Credit: Matthew Tyska, Ph.D., and colleagues, Vanderbilt University

The "brush border" – a densely packed array of finger-like projections called microvilli – covers the surfaces of the cells that line our intestines.

Vanderbilt University researchers have now discovered how intestinal cells build this specialized structure, which is critical for absorbing nutrients and defending against pathogens. The findings, published April 10 in the journal Cell, reveal a role for in brush border assembly and increase our understanding of intestinal pathologies associated with inherited and infectious diseases.

Pathogens that destroy the intestinal brush border cause diarrhea and death – a particular problem in communities that do not have safe water supplies.

"Without a fully functional brush border that has enough surface area and absorptive capacity, you can't survive," said Matthew Tyska, Ph.D., associate professor of Cell and Developmental Biology and senior author of the Cell paper. "Our basic science discoveries provide a framework for thinking about how to control intestinal surface morphology – and how to repair it."

Despite the essential role of the brush border, its assembly has remained a mystery. Using scanning electron microscopy, Tyska and postdoctoral fellow Scott Crawley, Ph.D., followed the generation of the brush border over time in an epithelial cell culture model.

They found that as the microvilli begin to emerge, they stick to each other at their tips and form small teepee-like clusters. Over time, these clusters grow to include more and more microvilli, until the entire cell surface is covered by microvilli of uniform height.

"This was really the fundamental observation that gave rise to the rest of the project – that these microvilli come out of the cell surface and stick together at the tips," Tyska said.

This video is not supported by your browser at this time.

When the investigators closely examined the electron micrographs, they saw thread-like links connecting microvilli at their tips. One of their collaborators imaged intestinal tissue and found the same links – a "web of connections" between the microvilli, Tyska said.

"We were excited by the idea that physical adhesion between microvilli might provide the driving force for growing and tightly packing the brush border," Tyska said.

The investigators suspected that proteins in the cadherin family – calcium-dependent adhesion molecules that allow to stick together – might mediate the interaction between microvilli. They had previously used proteomics technologies to define all of the proteins in the isolated brush border. The list included two candidates for microvillar tip adhesion: protocadherin-24 and mucin-like protocadherin.

In a series of studies, the team demonstrated that these two cadherins have a role in sticking microvilli together. Experimental reduction of protocadherin-24 in the cell culture model destroyed the brush border. Microvilli still formed, but they were not tightly packed and they had variable lengths.

"It's always been a question how microvilli achieve this remarkably uniform length," Tyska said. "Now it looks like the solution is simple – they get tied together at the tips and one can't get past another. It's really straightforward."

In biochemical experiments, the researchers discovered that the cadherin molecules interacted with two proteins inside microvilli – a motor protein connected to the cell cytoskeleton and an adapter protein called harmonin. These connections were required for the localization of the cadherins to the microvillar tips.

Interestingly, harmonin had been studied by other investigators for its role in linking protrusions on the inner ear hair cell – a sensory structure involved in hearing. Genetic mutations that disable harmonin cause Usher syndrome, a form of inherited deaf-blindness. Patients with Usher syndrome also have poorly characterized intestinal disease.

Tyska and his colleagues realized that harmonin mutations might disrupt the intestinal microvillar tip adhesion complex and destabilize the brush border. In a mouse missing harmonin, a model of Usher disease, they found poorly formed brush border in some parts of the intestines and no brush border in other areas.

"We think that patients with Usher disease probably have issues with brush border ultrastructure that are causing problems with homeostasis and leading to intestinal symptoms," Tyska said.

"Making the initial electron microscopy discovery, defining the molecular mechanism and then connecting it to human disease – that's a scientific hat trick," he said.

Tyska and his colleagues are exploring whether a similar adhesive complex guides the assembly of brush border structures in other epithelial tissues, such as the kidneys.

Explore further: Australian brush-turkey eggs inspire ideas for germ-resistant coatings

add to favorites email to friend print save as pdf

Related Stories

Molecular motors may speed nutrient processing

May 30, 2007

Matthew Tyska, Ph.D., recalls being intrigued, from the first day of his postdoctoral fellowship in 1999, with a nearly 30-year-old photograph. It was an electron micrograph that showed the internal structures of an intestinal ...

Finding microscopic motors in the gut

Jun 28, 2007

Digestion has a previously unsuspected mechanical dimension: Vanderbilt researchers have discovered that the tiny, hair-like protrusions that line the gut are filled with millions of molecular motors that produce streams ...

Towards a better understanding of inherited hearing loss

Oct 15, 2013

A team of researchers led by Dr. Michel Cayouette at the IRCM made an important discovery, published online yesterday by the scientific journal Developmental Cell, that could better explain some inherited forms of hearin ...

Recommended for you

Reading a biological clock in the dark

5 hours ago

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

Scientists see how plants optimize their repair

Oct 20, 2014

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SoylentGrin
not rated yet Apr 16, 2014
I'd like to see research like this lead to artificial intestines.
Imagine if we could not only replace damaged and underperforming intestinal tracts, but also boost their selectivity, and "tune" them for specific dietary needs.