In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

Texas A&M University researchers led by Dr. Xinghang Zhang in the Department of Mechanical Engineering have examined stress induced martensitic phase transformations in magnetic shape memory alloys via in-situ nanoindentation technique.

The paper titled "Two Types of Martensitic Phase Transformations in Magnetic Shape Memory Alloys by in-situ Nanoindentation Studies" was published in the March 31 issue (2014) of Advanced Materials. The first author of the paper is Mr. Yue Liu, a Ph.D. candidate in Dr. Zhang's research group.

Ni based magnetic alloys (MSMAs) have broad applications for actuators and microelectromechanical systems (MEMS) devices. Two-stage stress induced martensitic phase transformation, a widely observed phenomenon in these alloys, is described conventionally as a first stage L21 (austenite)-to-10M/14M (M: modulated martensite) transition, followed by a second stage 14M-to-L10 (tetragonal martensite) transformation at higher stresses.

During their in-situ nanoindentation experiments on Ni54Fe19Ga27 in a transmission electron microscope, Zhang and his graduate student, Mr. Yue Liu, discovered two distinctive types of martensitic phase transformation: A reversible gradual L21-to-10M/14M phase transformation at low stress, and an irreversible abrupt transition from residual L21-to-L10 martensite at higher stress. This study provides new perspectives on understanding stress induced in MSMAs.

More information: Liu, Y., Karaman, I., Wang, H. and Zhang, X. (2014), "Two Types of Martensitic Phase Transformations in Magnetic Shape Memory Alloys by In-Situ Nanoindentation Studies." Adv. Mater.. DOI: 10.1002/adma.201400217

Journal information: Advanced Materials

Citation: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys (2014, April 18) retrieved 19 March 2024 from https://phys.org/news/2014-04-in-situ-nanoindentation-phase-magnetic-memory.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Remembrances of things past: Researchers discover nanoscale shape-memory oxide

0 shares

Feedback to editors