Grasp of SQUIDs dynamics facilitates eavesdropping

April 22, 2014
Grasp of SQUIDs dynamics facilitates eavesdropping

Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure extremely subtle magnetic fields. It is made of two thin regions of insulating material that separate two superconductors – referred to as Josephson junctions – placed in parallel into a ring of superconducting material.

In a study published in European Physical Journal B, US scientists have focused on finding an analytical approximation to the theoretical equations that govern the dynamics of an array of SQUIDs. This work was performed by Susan Berggren from the US Navy research lab, SPAWAR Systems Center Pacific, in San Diego, CA, USA and Antonio Palacios of San Diego State University. Its applications are mainly in the military sector, including SQUID array-based low-noise amplifiers and antennas.

Simulating the dynamics of large arrays of SQUIDs costs a great deal of time, computing power and energy. Instead the authors employed an analytical approximation technique known as a perturbation analysis to reduce the computation time to practically zero. This involves selecting small system parameters as perturbation parameters, and applying them to the array of SQUIDs to create a solution, which helps represent the dynamics of such arrays.

In this study, the authors tested two different approximations. They compared the complete analytical solution for the two approaches using the model equation forms traditionally used for the numerical simulations, then plotted both solutions to determine the effects of the approximation errors on the average voltage versus magnetic field response. In a last step, they applied the most precise approximation to a series coupled array of SQUIDs. The resulting model of the average voltage versus magnetic field response helped them evaluate the sensitivity of such magnetometers, while also shaping future applications.

Explore further: Researchers build SQUID device that demonstrates the Josephson effect

More information: S. Berggren and A. Palacios (2014), Analytical Approximations to the Dynamics of an Array of Coupled DC SQUIDs, European Physical Journal B, DOI: 10.1140/epjb/e2014-50065-9

Related Stories

Physicists pay homage to the SQUID at 50

March 13, 2014

From humble beginnings in a series of accidental discoveries, SQUIDs have invaded and enhanced many areas of science and medicine, thanks, in part, to the National Institute of Standards and Technology (NIST).

Recommended for you

Light-powered 3-D printer creates terahertz lens

April 29, 2016

From visible light to radio waves, most people are familiar with the different sections of the electromagnetic spectrum. But one wavelength is often forgotten, little understood, and, until recently, rarely studied. It's ...

A tiny switch for a few particles of light

April 29, 2016

The Jedi knights of the Star Wars saga are engaged in an impossible fight. This does not result from the superiority of the enemy empire, but from physics because laser swords cannot be used for fighting like metallic blades: ...

Physicists detect the enigmatic spin momentum of light

April 25, 2016

Ever since Kepler's observation in the 17th century that sunlight is one of the reasons that the tails of comets to always face away from the sun, it has been understood that light exerts pressure in the direction it propagates. ...

Superfast light source made from artificial atom

April 26, 2016

All light sources work by absorbing energy – for example, from an electric current – and emit energy as light. But the energy can also be lost as heat and it is therefore important that the light sources emit the light ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.