New research on gigabit wireless communications

Apr 10, 2014
This is an example of mmWave. Credit: Communication Systems and Networks research group, University of Bristol, © 2014

Research on gigabit wireless communications has been presented by researchers from the University of Bristol at the world's leading wireless communications and networking conference, IEEE WCNC 2014, in Turkey earlier this week [Monday 6 to Wednesday 9 April].

The two research papers, led by Andrew Nix, Professor of Wireless Communication Systems and Dr Simon Armour, Senior Lecturer in Software Radio, from the University's Communication Systems and Networks research group in the Department of Electrical and Electronic Engineering, could have significant implications for the future of mobile devices.

The millimetre-wave band (58-63GHz) is seen as a perfect candidate for short-range gigabit wireless communications. These networks are envisaged to satisfy the demands of future data-rate hungry applications but few studies have analysed the potential of frequency reuse at 60GHz.

The first paper on gigabit could radically enhance the wireless capabilities of future mobile phones and tablets. The research looked at enhanced technologies and algorithms to increase the data capacity and densification of short range wireless networks. The work showed that polarimetric filtering can enable a higher density of active data links. Each millimetre wave link is capable of supporting user rates of up to 7Gbps, with Bristol's research showing that four simultaneous links could be active in a single room. These data capacities are 100x better than those achieved with current Wi-Fi technologies.

This video is not supported by your browser at this time.

The demand for data access by mobile users is doubling every year and is predicted to continue into the foreseeable future. This is pushing service providers to deploy denser networks. Also, since the frequency bands used by 3G and 4G services are close to their capacity limits, there is considerable interest in the use of millimetre wave frequencies for 5G cellular networks.

The second paper considered beamforming as a solution to provide multi-gigabit connections between the 4G and 5G cellular base stations and the core network. The work also supported direct connections to the users. Here beamforming is used to focus the communication waveforms onto specific mobile phones and tablets.

At present it is common for the data rates in a cellular network to be limited by the link to the core network (known as backhaul). The research proposed an efficient adaptive beamforming algorithm to extend the range and data rate while also reducing interference. The paper used compressive sensing to significantly reduce the amount of control data needed to adapt the network to temporal and spatial changes in the channel.

Professor Andrew Nix said: "Both research papers represent an important contribution in the quest to address the ever increasing user demand for higher data rates and capacities. We are fast running out of radio spectrum in the lower frequency bands where cellular and Wi-Fi current operation. As a result we need to exploit high frequencies in future products."

Explore further: Emergency services benefit from a high-speed wireless technology

More information: Paper one: Polarimetric filtering for an enhanced multi-user 60GHz WPAN system, Djamal Eddine Berraki, Simon Armour, Andrew Nix, PHY11 Session.

Paper two: Application of compressive sensing in sparse spatial channel recovery for beamforming in mmWave outdoor systems, Djamal Eddine Berraki, Simon Armour, Andrew Nix, PHY29 Session.

add to favorites email to friend print save as pdf

Related Stories

Scientist creates solution for looming broadband shortage

Aug 27, 2013

A new technology could help manage a potential data tsunami that might otherwise drastically restrict the use of smartphones, tablets and other wireless data technologies because of a nationwide mobile wireless ...

Researchers study best use of 'whitespace' spectrum

Sep 11, 2012

(Phys.org)—The demand for faster, more mobile Internet access for smartphones, tablets and laptops does more than strain the available space we have in our pockets and bags. There's a finite amount of wireless spectrum ...

IEEE 802.11ad approval steps up marketplace WiGig

Jan 18, 2013

(Phys.org)—IEEE has adopted a new standard, 802.11ad, which marks the advent of 7Gbps wireless. The newly approved standard will be commercially known as WiGig, and the technology behind WiGig is seen as ...

UK telecoms regulator studies possibility of 5G

Nov 16, 2012

(Phys.org)—Minding the need for more and more mobile spectrum in a post-4G environment, Ofcom, the UK telecoms regulator, announced on Friday that it is preparing to support the release of spectrum for ...

Recommended for you

Verizon launches rewards program with tracking

Jul 21, 2014

Verizon Wireless is launching a nationwide loyalty program this week for its 100-million-plus subscribers. There's a twist, though: To earn points for every dollar spent, subscribers must consent to have their movements tracked ...

Verizon boosts FiOS uploads to match downloads

Jul 21, 2014

Verizon is boosting the upload speeds of nearly all its FiOS connections to match the download speeds, vastly shortening the time it takes for subscribers to send videos and back up their files online.

The goTenna device pitch is No Service, No Problem

Jul 18, 2014

In the new age of Internet-based crowdfunding with special price offers, where startup teams try to push their product closer and closer to the gate of entry, goTenna's campaign offers a most attractive pitch. ...

Maths can make the internet 5-10 times faster

Jul 17, 2014

Mathematical equations can make Internet communication via computer, mobile phone or satellite many times faster and more secure than today. Results with software developed by researchers from Aalborg University ...

User comments : 0