How a fish can fry: Scientists uncover evolutionary clues behind electric fish

Apr 29, 2014

Take a muscle cell, modify it over millions of years, and you end up with an exciting and literally shocking evolutionary result: the electric fish. Electric fish have evolved several times in varying levels of complexity. Two groups of electric fish, one in Africa (Mormyroids) and one in South America (Gymnotiforms), have independently evolved sophisticated communication systems using these cells. By emitting and sensing weak electrical signals, the fish have bypassed the usual means of communication, such as with sounds and visual signals, and go directly to electrical signals. This allows them to quietly "talk" to each other in the dark so that most predators can't eavesdrop. Both groups of fish are incredibly diverse; one species, the famous electric eel of South America, even evolved such strong and intense electric signals that it can electrocute its prey.

A gene that is particularly important for electric cells is the voltage-gated sodium channel. During an ancestral gene duplication event, the voltage-gated sodium channel of muscle, Scn4a, duplicated to Scn4aa and Scn4ab. This caused genes to diversify and in parallel the same duplicate gene, Scn4aa, specialized for electric cells in Africa and South America while the other, Scn4ab, remained specialized for muscles. The regulated currents flow through the ion channels and generate . In the advanced online publication of Molecular Biology and Evolution, authors Ammon Thompson et al., showed that the Scn4aa sodium channel gene may have an evolutionary bias over its twin to take part in novel cell types derived from muscle cells.

Evidence for their hypothesis was provided by RT-qPCR data of Scn4aa and Scn4ab from electric fish, which were compared with non-. They speculate that the down-regulation of the Scn4aa gene leads to quicker evolution and adaptation. Also, in an exciting discovery, they found this same Scn4aa gene expression pattern in a species of fish that uses sound to communicate, showing another extraordinary evolutionary adaption from the ancient gene duplication. The results provide a compelling hypothesis that gene duplications and gene 'expression drift' may be a more common evolutionary phenomenon in the development of new organ systems.

By peering into the evolutionary history of these we're starting to understand why the same gene plays a role in the repeated evolution of these unusual organs," said researcher Ammon Thompson.

Explore further: New electric fish genus and species discovered in Brazil's Rio Negro

add to favorites email to friend print save as pdf

Related Stories

Rainbow trout genome sequenced

Apr 22, 2014

Using fish bred at Washington State University, an international team of researchers has mapped the genetic profile of the rainbow trout, a versatile salmonid whose relatively recent genetic history opens ...

Fish use electric signals to find the right mate

Jun 11, 2009

Electric knifefish, close relatives of the electric eel, navigate and communicate by projecting electric fields around their bodies. Research at University of Toronto is clarifying how this sense has evolved, as well as providing ...

Recommended for you

Ninety-eight new beetle species discovered in Indonesia

2 hours ago

Ninety-eight new species of the beetle genus Trigonopterus have been described from Java, Bali and other Indonesian islands. Museum scientists from Germany and their local counterparts used an innovative approa ...

A vegetarian carnivorous plant

Dec 19, 2014

Carnivorous plants catch and digest tiny animals in order and derive benefits for their nutrition. Interestingly the trend towards vegetarianism seems to overcome carnivorous plants as well. The aquatic carnivorous bladderwort, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.