Faster computation of electromagnetic interference on an electronic circuit board

April 23, 2014
Faster computation of electromagnetic interference on an electronic circuit board
The capacity to effectively model electromagnetic interference on electronic circuit boards in the product design phase will save time and money for the electronics industry. Credit: VvoeVale/iStock/Thinkstock

As electronic components on electronic circuit boards continue to shrink, problems of electromagnetic compatibility are arising. Such problems include unwanted 'noise' effects due to electromagnetic interference and susceptibility. "Electromagnetic interference is a critical problem for the electronics industry," explains Xian-Ke Gao from the A*STAR Institute of High Performance Computing in Singapore. "Engineers are keen to understand how the electronic circuits react. However, it is difficult to measure such effects experimentally, because disassembling the device would affect the physical testing."

To address this problem, the has developed a suite of computer modeling tools, but these are cumbersome and require a lot of computing power. Now, Gao and colleagues have developed a computer model that is able to solve such problems more than ten times faster than existing models.

Fairly coarse models are typically used to model electromagnetic interference effects on electronic circuit boards (see image). To do this, the device is divided into a grid of small cubes, and the electromagnetic fields to and from each cube are modeled individually. This approach requires a lot of computing power, especially if the grid size is small, but it has the advantage that it is flexible and can be adapted to various geometries. Except for interference effects, the same computer models can be applied to calculate for a range of electrical devices other than circuit boards.

A more targeted and efficient approach is required to measure interference effects. Researchers use mathematical equations to describe the electrical currents in a conducting wire. The physics of these transmission-line equations are well understood and, once adapted to the unique properties of , are far easier to solve by a computer algorithm than the other, coarser modeling.

The first tests of the software package developed by the A*STAR researchers, which is based on the transmission-line equations, reliably solved a number of standard problems for . Compared to commercial models, the new software achieved very good agreement, especially for the main region of interest—frequencies below one gigahertz.

Speed, however, is the key advantage of using the software. Whereas commercial software requires more than two hours of computing on a regular laptop, the A*STAR software package needed less than ten minutes for the same task, explains Gao. "Our computational problem-solving kit can shorten trouble-shooting in the product design phase and therefore translates into time and cost savings for the industry."

Explore further: Faster computational methods could simulate the power and signal integrity of next-generation electronic systems

More information: Gao, X.-K., Zhao, H., Li, E.-P. & Hoefer, W. J. R. "Radiated electromagnetic immunity analysis of flex cable with ground plane using transmission line equations." IEEE Transactions on Electromagnetic Compatibility 55, 875–882 (2013).

Related Stories

Device physics: Simulating electronic smog

July 3, 2013

A research team from A*STAR and Samsung Electronics has developed a fast and accurate way to estimate the electromagnetic emissions from printed circuit boards that could help designers to ensure that devices meet regulatory ...

Defense against electromagnetic fields

December 2, 2013

Electromagnetic fields can interfere with or damage electronic devices. Electromagnetic radiation is invisible to people. A new measuring instrument can now determine the strength, frequency, and direction of the attack.

Modeling metamaterials

January 10, 2014

EPFL scientists have developed an innovative mathematical method to greatly improve computer modeling of metamaterials.

Recommended for you

Nevada researchers trying to turn roadside weed into biofuel

November 26, 2015

Three decades ago, a University of Nevada researcher who obtained one of the first U.S. Energy Department grants to study the potential to turn plants into biofuels became convinced that a roadside weed—curly top gumweed—was ...

Glider pilots aim for the stratosphere

November 20, 2015

Talk about serendipity. Einar Enevoldson was strolling past a scientist's office in 1991 when he noticed a freshly printed image tacked to the wall. He was thunderstruck; it showed faint particles in the sky that proved something ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.