Faster computation of electromagnetic interference on an electronic circuit board

Apr 23, 2014
Faster computation of electromagnetic interference on an electronic circuit board
The capacity to effectively model electromagnetic interference on electronic circuit boards in the product design phase will save time and money for the electronics industry. Credit: VvoeVale/iStock/Thinkstock

As electronic components on electronic circuit boards continue to shrink, problems of electromagnetic compatibility are arising. Such problems include unwanted 'noise' effects due to electromagnetic interference and susceptibility. "Electromagnetic interference is a critical problem for the electronics industry," explains Xian-Ke Gao from the A*STAR Institute of High Performance Computing in Singapore. "Engineers are keen to understand how the electronic circuits react. However, it is difficult to measure such effects experimentally, because disassembling the device would affect the physical testing."

To address this problem, the has developed a suite of computer modeling tools, but these are cumbersome and require a lot of computing power. Now, Gao and colleagues have developed a computer model that is able to solve such problems more than ten times faster than existing models.

Fairly coarse models are typically used to model electromagnetic interference effects on electronic circuit boards (see image). To do this, the device is divided into a grid of small cubes, and the electromagnetic fields to and from each cube are modeled individually. This approach requires a lot of computing power, especially if the grid size is small, but it has the advantage that it is flexible and can be adapted to various geometries. Except for interference effects, the same computer models can be applied to calculate for a range of electrical devices other than circuit boards.

A more targeted and efficient approach is required to measure interference effects. Researchers use mathematical equations to describe the electrical currents in a conducting wire. The physics of these transmission-line equations are well understood and, once adapted to the unique properties of , are far easier to solve by a computer algorithm than the other, coarser modeling.

The first tests of the software package developed by the A*STAR researchers, which is based on the transmission-line equations, reliably solved a number of standard problems for . Compared to commercial models, the new software achieved very good agreement, especially for the main region of interest—frequencies below one gigahertz.

Speed, however, is the key advantage of using the software. Whereas commercial software requires more than two hours of computing on a regular laptop, the A*STAR software package needed less than ten minutes for the same task, explains Gao. "Our computational problem-solving kit can shorten trouble-shooting in the product design phase and therefore translates into time and cost savings for the industry."

Explore further: Modeling metamaterials

More information: Gao, X.-K., Zhao, H., Li, E.-P. & Hoefer, W. J. R. "Radiated electromagnetic immunity analysis of flex cable with ground plane using transmission line equations." IEEE Transactions on Electromagnetic Compatibility 55, 875–882 (2013). dx.doi.org/10.1109/TEMC.2013.2242079

add to favorites email to friend print save as pdf

Related Stories

Device physics: Simulating electronic smog

Jul 03, 2013

A research team from A*STAR and Samsung Electronics has developed a fast and accurate way to estimate the electromagnetic emissions from printed circuit boards that could help designers to ensure that devices ...

Modeling metamaterials

Jan 10, 2014

EPFL scientists have developed an innovative mathematical method to greatly improve computer modeling of metamaterials.

Defense against electromagnetic fields

Dec 02, 2013

Electromagnetic fields can interfere with or damage electronic devices. Electromagnetic radiation is invisible to people. A new measuring instrument can now determine the strength, frequency, and direction ...

Recommended for you

LiquidPiston unveils quiet X Mini engine prototype

1 hour ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Novel robotic walker helps patients regain natural gait

6 hours ago

Survivors of stroke or other neurological conditions such as spinal cord injuries, traumatic brain injuries and Parkinson's disease often struggle with mobility. To regain their motor functions, these patients ...

Tomorrow's degradable electronics

Nov 20, 2014

When the FM frequencies are removed in Norway in 2017, all old-fashioned radios will become obsolete, leaving the biggest collection of redundant electronics ever seen – a mountain of waste weighing something ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.