Exploring a microbial arms race

Apr 07, 2014 by Deborah Smith
Exploring a microbial arms race
A scanning electron micrograph of Pseudomonas aeruginosa bacteria. Credit: Janice Haney Carr/CDC

A rapid evolutionary "arms race" between bacteria and the killer viruses they contain has been observed by a UNSW-led team of scientists in a sophisticated genetic study of the micro-organisms.

Associate Professor Torsten Thomas, Dr Kerensa McElroy and colleagues from the Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences studied the evolution of Pseudomonas aeruginosa – that can cause chronic, often lethal lung infections in people with cystic fibrosis.

By sequencing the DNA of entire bacterial populations as they evolved in the laboratory, they were able to identify the genetic mutations underlying rapid evolution of the bacteria.

"We uncovered an interesting between the bacteria and the viruses," says Dr McElroy.

 "We found the viruses are evolving unusually rapidly. And the bacteria defend themselves against the viruses by changing their surface structure, so the cannot reinfect them."

The study is published in the journal Proceedings of the National Academy of Sciences.

The research, which makes use of advanced DNA sequencing technologies, is important for understanding how bacteria evolve, so they can be better combated in future.

"Most antibiotics are failing us quite miserably, which has a lot to do with the that bacteria can undergo. It is vital to understand how they evolve, and the different pathways they can take, depending on the environment they live in," says Associate Professor Thomas.

Explore further: Bacteria in cystic fibrosis lung infections become selfish

More information: "Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation." Kerensa E. McElroy, et al. PNAS March 28, 2014. DOI: 10.1073/pnas.1314340111

add to favorites email to friend print save as pdf

Related Stories

How bacteria respond so quickly to external changes

Dec 02, 2013

Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0