Exploring a microbial arms race

Apr 07, 2014 by Deborah Smith
Exploring a microbial arms race
A scanning electron micrograph of Pseudomonas aeruginosa bacteria. Credit: Janice Haney Carr/CDC

A rapid evolutionary "arms race" between bacteria and the killer viruses they contain has been observed by a UNSW-led team of scientists in a sophisticated genetic study of the micro-organisms.

Associate Professor Torsten Thomas, Dr Kerensa McElroy and colleagues from the Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences studied the evolution of Pseudomonas aeruginosa – that can cause chronic, often lethal lung infections in people with cystic fibrosis.

By sequencing the DNA of entire bacterial populations as they evolved in the laboratory, they were able to identify the genetic mutations underlying rapid evolution of the bacteria.

"We uncovered an interesting between the bacteria and the viruses," says Dr McElroy.

 "We found the viruses are evolving unusually rapidly. And the bacteria defend themselves against the viruses by changing their surface structure, so the cannot reinfect them."

The study is published in the journal Proceedings of the National Academy of Sciences.

The research, which makes use of advanced DNA sequencing technologies, is important for understanding how bacteria evolve, so they can be better combated in future.

"Most antibiotics are failing us quite miserably, which has a lot to do with the that bacteria can undergo. It is vital to understand how they evolve, and the different pathways they can take, depending on the environment they live in," says Associate Professor Thomas.

Explore further: The 'intraterrestrials': New viruses discovered in ocean depths

More information: "Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation." Kerensa E. McElroy, et al. PNAS March 28, 2014. DOI: 10.1073/pnas.1314340111

Related Stories

How bacteria respond so quickly to external changes

Dec 02, 2013

Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our ...

Recommended for you

Deciphering the origins of cell behavior

10 hours ago

Researchers at the Mechanobiology Institute, National University of Singapore, have made significant advances in our understanding of cellular biology; providing evidence that the inherent 'handedness' of ...

Researchers clarify how DNA damage signaling works

13 hours ago

The DNA molecule is chemically unstable, giving rise to DNA lesions of various kinds. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.