Exploring a microbial arms race

Apr 07, 2014 by Deborah Smith
Exploring a microbial arms race
A scanning electron micrograph of Pseudomonas aeruginosa bacteria. Credit: Janice Haney Carr/CDC

A rapid evolutionary "arms race" between bacteria and the killer viruses they contain has been observed by a UNSW-led team of scientists in a sophisticated genetic study of the micro-organisms.

Associate Professor Torsten Thomas, Dr Kerensa McElroy and colleagues from the Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences studied the evolution of Pseudomonas aeruginosa – that can cause chronic, often lethal lung infections in people with cystic fibrosis.

By sequencing the DNA of entire bacterial populations as they evolved in the laboratory, they were able to identify the genetic mutations underlying rapid evolution of the bacteria.

"We uncovered an interesting between the bacteria and the viruses," says Dr McElroy.

 "We found the viruses are evolving unusually rapidly. And the bacteria defend themselves against the viruses by changing their surface structure, so the cannot reinfect them."

The study is published in the journal Proceedings of the National Academy of Sciences.

The research, which makes use of advanced DNA sequencing technologies, is important for understanding how bacteria evolve, so they can be better combated in future.

"Most antibiotics are failing us quite miserably, which has a lot to do with the that bacteria can undergo. It is vital to understand how they evolve, and the different pathways they can take, depending on the environment they live in," says Associate Professor Thomas.

Explore further: Bacteria in cystic fibrosis lung infections become selfish

More information: "Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation." Kerensa E. McElroy, et al. PNAS March 28, 2014. DOI: 10.1073/pnas.1314340111

add to favorites email to friend print save as pdf

Related Stories

How bacteria respond so quickly to external changes

Dec 02, 2013

Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our ...

Recommended for you

How plant cell compartments change with cell growth

9 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

9 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

10 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

10 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0