'Exotic' material is like a switch when super thin

'Exotic' material is like a switch when super thin
An artist’s rendering of the thickness-driven, metal-insulator transition in sub-nanometer films of a lanthanum nickelate. Nickel atoms are shown in gold, oxygen atoms in white, and lanthanum atoms in red, and metallicity is achieved in going from two to three atomic layers. Credit: Haofei Wei

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance and other exotic properties. These possibilities have scientists excited to understand everything about these materials, and to find new ways to control their properties at the most fundamental levels.

Researchers from Cornell and Brookhaven National Laboratory have shown how to switch a particular oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

The team, which published its findings in the April issue of Nature Nanotechnology, includes lead researcher Kyle Shen, associate professor of physics; first author Phil King, a recent Kavli postdoctoral fellow at Cornell now on the faculty at the University of St. Andrews; Darrell Schlom, the Herbert Fisk Johnson Professor of Industrial Chemistry; and co-authors Haofei Wei, Yuefeng Nie, Masaki Uchida, Carolina Adamo, and Shabo Zhu (Cornell), and Xi He and Ivan Božović (Brookhaven National Laboratory).

Using an extremely precise growth technique called molecular-beam epitaxy (MBE), King synthesized atomically thin samples of the lanthanum nickelate and discovered that the material changes abruptly from a metal to an insulator when its thickness is reduced to below 1 nanometer. When that threshold is crossed, its conductivity – the ability for electrons to flow through the material – switches off like a light, a characteristic that could prove useful in nanoscale switches or transistors, Shen said.

Using a one-of-a-kind system at Cornell, which integrates MBE film growth with a technique called angle-resolved photoemission spectroscopy (ARPES), King and colleagues mapped out how the motions and interactions of the electrons in the material changed across this threshold, varying the thickness of their oxide films atom by atom. They discovered that when the films were less than 3 nickel atoms thick, the electrons formed an unusual nanoscale order, akin to a checkerboard.

The results demonstrate the ability to control the electronic properties of exotic at the nanometer scale, as well as revealing the striking cooperative interactions that govern the behavior of the electrons in these ultrathin materials. Their discovery paves the way for making advanced new from oxides.

More information: Atomic-scale control of competing electronic phases in ultrathin LaNiO3, Nature Nanotechnology (2014) DOI: 10.1038/nnano.2014.59

Journal information: Nature Nanotechnology

Provided by Cornell University

Citation: 'Exotic' material is like a switch when super thin (2014, April 18) retrieved 18 March 2024 from https://phys.org/news/2014-04-exotic-material-super-thin.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Interfaces are key in metal oxide superlattices

0 shares

Feedback to editors