Wind energy: On the grid, off the checkerboard

Apr 01, 2014
The figure shows a three-dimensional visualization of the flow in a simulated wind-farm. The blue regions show a volume rendering of low-velocity wind regions. These low velocity regions are primarily found in the meandering wakes behind the turbines. Credit: JHU LES/Bock/XSEDE

As wind farms grow in importance across the globe as sources of clean, renewable energy, one key consideration in their construction is their physical design—spacing and orienting individual turbines to maximize their efficiency and minimize any "wake effects," where the swooping blades of one reduces the energy in the wind available for the following turbine.

Optimally spacing turbines allows them to capture more wind, produce more power and increase revenue for the farm. Knowing this, designers in the industry typically apply simple computer models to help determine the best arrangements of the turbines. This works well for small but becomes less precise for larger wind-farms where the wakes interact with one another and the overall effect is harder to predict.

Now a team of researchers at Johns Hopkins University (JHU) has developed a new way to study wake effects that takes into account the airflow both within and around a wind farm and challenges the conventional belief that turbines arrayed in checker board patterns produce the highest . Their study provides insight into factors that determine the most favorable positioning—work described in a new paper in the Journal of Renewable and Sustainable Energy.

This insight is important for wind project designers in the future to configure farms for increased power output—especially in places with strong prevailing winds.

"It's important to consider these configurations in ," said Richard Stevens, who conducted the research with Charles Meneveau and Dennice Gayme at JHU. "If turbines are built in a non-optimal arrangement, the amount of electricity produced would be less and so would the revenue of the wind farm."

How Wind Farms are Currently Designed

Many considerations go into the design of a wind farm. The most ideal turbine arrangement will differ depending on location. The specific topology of the landscape, whether hilly or flat, and the yearlong weather patterns at that site both dictate the specific designs. Political and social considerations may also factor in the choice of sites.

Common test cases to study wind-farm behavior are wind farms in which turbines are either installed in rows, which will be aligned against the prevailing winds, or in staggered, checkerboard-style blocks where each row of turbines is spaced to peek out between the gaps in the previous row.

Staggered farms are generally preferred because they harvest more energy in a smaller footprint, but what Stevens and his colleagues showed is that the checkerboard style can be improved in some cases.

Specifically, they found that better power output may be obtained through an "intermediate" staggering, where each row is imperfectly offset—like a checkerboard that has slipped slightly out of whack.

Explore further: New research blows away claims that aging wind farms are a bad investment

More information: The article, "Large Eddy Simulation studies of the effects of alignment and wind farm length" is authored by Richard J. A. M. Stevens, Dennice F. Gayme and Charles Meneveau. It will be published in the Journal of Renewable and Sustainable Energy on April 1, 2014. DOI: 10.1063/1.4869568

add to favorites email to friend print save as pdf

Related Stories

Using fluctuating wind power

Mar 25, 2013

Incorporating wind power into existing power grids is challenging because fluctuating wind speed and direction means turbines generate power inconsistently. Coupled with customers' varying power demand, many ...

Automatic self-optimization of wind turbines

Mar 12, 2014

Siemens is "teaching" wind turbines how to automatically optimize their operation in line with weather conditions. The turbines are learning to use sensor data on parameters such as wind speed to make changes ...

Recommended for you

Website shines light on renewable energy resources

6 hours ago

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Better software cuts computer energy use

6 hours ago

An EU research project is developing tools to help software engineers create energy-efficient code, which could reduce electricity consumption at data centres by up to 50% and improve battery life in smart ...

Cook farm waste into energy

Dec 17, 2014

It takes some cooking, but turning farm waste into biofuels is now possible and makes economic sense, according to preliminary research from the University of Guelph.

Developing a reliable wind 'super grid' for Europe

Dec 17, 2014

EU researchers are involved in the development of a pan-European 'super grid' capable of dispersing wind power across Member States. This will bring more renewable energy into homes and businesses, help reduce ...

Boeing 737 factory to move to clean energy

Dec 16, 2014

Boeing said Tuesday it plans to buy renewable energy credits to replace fossil-fuel power at the factory in Washington state where it assembles its 737 commercial airplanes.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.