Drought hormones measured

April 15, 2014

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in order to prepare for and combat the risks to food security that could result.

Like animals, plants have hormones that send between its cells relaying information about the plant's development or interactions with the outside world. One particular way in which plants use hormone signals is in reaction to drought or soil saltiness. The hormone responsible for this type of response is called . It not only controls efficient water use, but plays a role in signaling when seeds should remain dormant and when they should germinate, depending on soil conditions.

New work from a team including Carnegie's Wolf Frommer will allow researchers, for the first time, to measure the levels of abscisic acid in individual plant cells in real time. It is published in eLife.

"This will vastly improve our understanding of how abscisic acid works in a plant that is stressed by salt or lack of water," Frommer explained. "This new tool can help engineers and farmers work to increase crop yields, which is especially important as climate change puts plants under increased stress."

The team's tool uses multiple fluorescently tagged proteins to measure the concentration of abscisic acid found in a plant cell. Their findings indicate that there are likely more proteins responsible for transporting abscisic acid into a cell than are currently known and also that abscisic acid is eliminated by root cells very quickly after uptake.

"More work should reveal the fine-tuning by which plant cells respond and react to hormone signals. These tools should also have applications for human and animal hormones, as well," Frommer said.

Explore further: Plants give up some deep secrets of drought resistance

Related Stories

Plants give up some deep secrets of drought resistance

August 23, 2010

In a study that promises to fill in the fine details of the plant world's blueprint for surviving drought, a team of Wisconsin researchers has identified in living plants the set of proteins that help them withstand water ...

A major step forward towards drought tolerance in crops

December 19, 2011

When a plant encounters drought, it does its best to cope with this stress by activating a set of protein molecules called receptors. These receptors, once activated, turn on processes that help the plant survive the stress.

How salt stops plant growth

January 23, 2013

Until now it has not been clear how salt, a scourge to agriculture, halts the growth of the plant-root system. A team of researchers, led by the Carnegie Institution's José Dinneny and Lina Duan, found that not all types ...

Nitrogen-tracking tools for better crops and less pollution

February 18, 2014

As every gardner knows, nitrogen is crucial for a plant's growth. But nitrogen absorption is inefficient. This means that on the scale of food crops, adding significant levels of nitrogen to the soil through fertilizer presents ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.