Diverse gene pool critical for tigers' survival

April 16, 2014 by Rob Jordan
Researchers at Stanford Woods Institute for the Environment are examining conservation plans for wild tigers that would promote gene flow among populations. Credit: Prasenjeet Yadav

(Phys.org) —New research by Stanford scholars shows that increasing genetic diversity among the 3,000 or so tigers left on the planet is the key to their survival as a species.

Iconic symbols of power and beauty, may roam only in stories someday soon. Their historical range has been reduced by more than 90 percent. But conservation plans that focus only on increasing numbers and preserving distinct subspecies ignore , according to the study. In fact, under that approach, the tiger could vanish entirely.

"Numbers don't tell the entire story," said study co-author Elizabeth Hadly, the Paul S. and Billie Achilles Professor in Environmental Biology at Stanford and senior fellow at the Stanford Woods Institute for the Environment. She is a co-author of the study, which was published April 17 in the Journal of Heredity.

That research shows that the more there is among tiger populations, the more genetic diversity is maintained and the higher the chances of species survival become. In fact, it might be possible to maintain tiger populations that preserve about 90 percent of genetic diversity.

Rachael Bay, a graduate student in biology at Stanford's Hopkins Marine Station and the lead author of the study, said, "Genetic diversity is the basis for adaptation."

Loss of diversity

The research focused on the Indian subcontinent, home to about 65 percent of the world's wild tigers. The scientists found that as populations become more fragmented and the pools of each tiger subspecies shrink, so does genetic diversity. This loss of diversity can lead to lower reproduction rates, faster spread of disease and more cardiac defects, among other problems.

The researchers used a novel framework, based on a method previously employed to analyze ancient DNA samples, to predict what population size would be necessary to maintain current genetic diversity of tigers into the future. The authors believe this new approach could help in managing populations of other threatened species.

The results showed that for to maintain their current genetic diversity 150 years from now, the tiger population would have to expand to about 98,000 individuals if gene flow across species were delayed 25 years. By comparison, the population would need to grow to about 60,000 if gene flow were achieved immediately.

Neither of these numbers is realistic, considering the limited size of protected tiger habitat and availability of prey, among other factors, according to the researchers.

Limited habitat

"Since genetic variability is the raw material for future evolution, our results suggest that without interbreeding subpopulations of tigers, the genetic future for tigers is not viable," said co-author Uma Ramakrishnan, a former Stanford postdoctoral scholar in biology and current researcher at the National Centre for Biological Sciences in Bangalore, India.

Because migration and interbreeding among subspecies appear to be "much more important" for maintaining genetic diversity than increasing population numbers, the researchers recommend focusing conservation efforts on creating ways for tigers to travel longer distances, such as wildlife corridors, and potentially crossbreeding wild and captive tiger subspecies.

"This is very much counter to the ideas that many managers and countries have now – that tigers in zoos are almost useless and that interbreeding tigers from multiple countries is akin to genetic pollution," said Hadly. "In this case, survival of the species matters more than does survival of the exclusive traits of individual populations."

Understanding these factors can help decision-makers better address how development affects populations of and other animals, the study noted.

Conservation efforts for other top predators have shown the importance of considering genetic diversity and connectivity among populations, according to the report. One example is Florida panthers: since individuals from a closely related panther subspecies were introduced to the population, Florida panthers have seen a modest rise in numbers and fewer cases of genetic disorders and poor fitness.

Explore further: New genetics research on leopards and tigers in India underscores importance of protecting forest corridors

More information: Rachael A. Bay, Uma Ramakrishnan, and Elizabeth A. Hadly, "A Call for Tiger Management Using "Reserves" of Genetic Diversity." J Hered (2014) 105 (3): 295-302 first published online December 11, 2013 DOI: 10.1093/jhered/est086

Related Stories

Tiger, tiger, not burning so bright

May 16, 2013

(Phys.org) —India's tigers are facing extinction owing to a collapse in the variety of their mating partners, according to new research carried out by scientists at Cardiff University.

White tiger mystery solved

May 23, 2013

White tigers today are only seen in zoos, but they belong in nature, say researchers reporting new evidence about what makes those tigers white. Their spectacular white coats are produced by a single change in a known pigment ...

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(Phys.org)—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.