Device turns flat surface into spherical antenna

April 14, 2014
The prototype of the fabricated metasurface lens shown with simulated x components of electric fields at 9 GHz with the source placed at the bottom left, right and center of the lens. Credit: T.J. Cui/Southeast University Nanjing

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves the same way an antenna does.

This breakthrough, which the team is calling the first broadband metasurface lens, may lead to the creation of new types of antennas that are flat, ultra low-profile or conformal to the shape of curved surfaces.

The new lens, described in AIP Publishing's journal Applied Physics Letters, was fabricated by Tie Jun Cui and colleagues at Southeast University in Nanjing, China and is an example of a metasurface or metamaterial—an artificial material engineered in the lab that has properties not found in nature. In this case, by coating the surface with the tiny U-shaped elements, it acquires properties that mimic something known as a Luneburg lens.

First discovered in the 1940s Luneburg lenses are traditionally spherical optics that interact with in an unusual way. Most lenses are made of a single material like plastic or glass that bends light passing through in a consistent, characteristic way—a key characteristic of the material, which is called its "index of refraction." Some materials, like glass, have a higher index of refraction and bend light more than other materials—such as quartz.

A Luneburg lens has the unusual property of bending light more or less depending on where the light strikes the lens. This is because in a Luneburg lens, the index of refraction varies across the spherical lens body, making it very different than a normal lens. Luneburg lenses can focus light or incoming to an off-axis point at the edge of the lens (not directly in front or behind it as a normal lens would do). Or they can uniformly channel electromagnetic waves emanating from a nearby point source and radiate them in a single direction—something no spherical lens can do.

Because of their properties, Luneburg lenses find a variety of applications as radar reflectors and microwave antennae. However, the spherical shape of a typical Luneburg lens is inconvenience in some applications, Cui said, which is why he and his colleagues used inhomogeneous artificial structures to create a flat surface that acts like a Luneburg .

The new work compliments the traditional way of constructing Luneburg lenses based on geometric optics—as well as a second way discovered in the last few years that uses holographic optics.

"We now have three systematical designing methods to manipulate the surface waves with inhomogeneous metasurfaces, the geometric optics, holographic optics, and transformation optics," Cui said. "These technologies can be combined to exploit more complicated applications."

Explore further: Engineers give industry a moth's eye view

More information: The article, "A broadband transformation-optics metasurface lens" by Xiang Wan, Wei Xiang Jiang, Hui Feng Ma, and Tie Jun Cui appears on the cover of the journal Applied Physics Letters on April 14, 2014. DOI: 10.1063/1.4870809

Related Stories

Engineers give industry a moth's eye view

November 26, 2007

When moths fly at night, their eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface ...

Flat-pack lens boosts solar power

February 10, 2014

Micro-machining could be used to create almost flat, Fresnel lenses, that boost the electrical efficiency of solar panels, according to researchers in China.

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.