Researchers use common spray gun to create self-assembling nanoparticle films

Apr 10, 2014 by Ann Stephen
Researchers use common spray gun to create self-assembling nanoparticle films

(Phys.org) —The promise of nanoparticles stems from their potential to modify the physical and mechanical properties of polymers for diverse applications, such as photovoltaic cells, sensors, and separation membranes. Methods currently used to create desired nanostructure, however, rely on complex and energy-intensive techniques, such as layer-by-layer or patterning approaches, which are limited in scale and often have poor stability.

Publishing in Nature Communications, Dr. Minhao Wong, a former graduate research assistant in the Polymer Technology Center of Dr. H-J Sue, Department of Materials Science and Engineering, and Dr. Ryohei Ishige of I2CNER (International Institute for Carbon-Neutral Energy Research), Kyushu University in Japan, have developed a simple approach of applying a surface coating of thin, flat nanoplatelets using a common spray gun, such as can be purchased off-the-shelf from an art supply store, to create a in which nanoplatelets spontaneously self-assemble into "nano-walls." The nano-walls act as rigid barriers that prevent oxygen gas from reaching the surface, and are effective at low and high humidity levels.

Using this scalable and simple processing method, researchers have achieved extremely fine and highly ordered nano-scale features that are conventionally achieved with complex and energy-intensive manufacturing techniques. This new technology is expected to be immediately useful in any application where blocking oxygen molecules is important, such as anti-corrosion paints for metal surfaces. The technique is simple and could be easily extended to other functional nanosheets.

To understand this process, imagine a bricklayer who dumps a barrow of bricks and the bricks spontaneously build up into a wall on their own. A similar process of "self-assembly" occurs for the nanoplatelets to create nano-walls that increase the barrier efficiency of the film by more than twenty times.

The advantage of the spray-coating method is its simplicity. It is now possible to achieve very fine and highly ordered nanoscale features that are usually seen only through the use of photolithographic manufacturing techniques. This means that the same degree of order can be achieved without the need for clean room facilities.

In the future, researchers hope to adjust the composition of the nanoplatelets to control the passage of gas molecules through the nano-wall, for very inexpensive, yet efficient, gas separation membranes useful in industrial processes. They are also interested in introducing new functionalities such as electrical conductivity or sensitivity to magnetic fields, so that large-area smart nano-walls can be fabricated. Many different kinds of nanoplatelets may potentially be used with this technology, so there are potentially countless possibilities for applications. In addition, incorporating different nanoplatelets to create hierarchical structures with improved properties is seen as another promising application for this technology.

Explore further: Graphene and diamonds prove a slippery combination

More information: "Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process." Minhao Wong, et al. Nature Communications 5, Article number: 3589 DOI: 10.1038/ncomms4589. Received 19 October 2013 Accepted 07 March 2014 Published 07 April 2014

Related Stories

Nano discs pose potential health risk

Feb 21, 2012

(PhysOrg.com) -- A revolutionary material that is used in computer technology could pose health risks to those involved in its manufacture.

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Atomico
not rated yet Apr 10, 2014
Technology is always moving forward! The new technology of the future is atom particles, now that there is a method to create atom particles in distilled water, rending colloids that contain Gold, Platinum, Iridium, Rhodium and even silver, it will be interesting to see what the atoms particles of these elements will accomplish.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.