A closer look into the TSLP cytokine structure

Apr 04, 2014

The PROXIMA 2 beamline at Synchrotron SOLEIL recently celebrated its first birthday. It's an occasion to reflect back upon a year of the collaborative work accomplished and its high scientific impact. In particular, a recent experiment performed on PROXIMA 2 at SOLEIL gives a new paradigm in the fight against asthma, which currently affects 235 million persons in the world (WHO estimate). As a laboratory - or "beamline" in synchrotron jargon - PROXIMA 2 can help academics to understand biological macromolecules and the pharmaceutical industry to make new, more potent and tailor-made drugs.

On the 21st of March 2014, PROXIMA 2 celebrated its first year open to external users of the scientific community in France and its neighbouring countries. PROXIMA 2 is at the cutting edge of the characterisation of 3D structures of at . These include proteins, DNA & RNA, as well as their complexes and assemblies, which make up ribosomes and virus particles. The arrangement of atoms (several thousands) in a biological macromolecule determines its biochemical function. As these molecules are only a few nanometers in size, X-ray crystallography is the most common method used to determine their atomic arrangement. However, one of the biggest challenges faced by the scientist is to grow single crystals of sufficient size and quality to be studied.

Typically, hundreds of crystallization conditions are tested before finding one that will produce crystals and hundreds of crystals are exposed to X-rays before obtaining data suitable to determine a 3D-structure. The micro-focused X-rays on PROXIMA 2 permit the smallest crystals to be tested which for the scientists can save months of work in preparing better crystals.

Furthermore, crystals of bio-molecules are far from single and unique objects. Instead, they are often cracked, deformed and/or clumped together with other crystals. The X-ray data from such "ugly" crystals are difficult to process and fail to yield 3D structures. Fortunately, with the finely focused X-ray beam on PROXIMA 2, the scientists can select out the best zones of these "ugly" crystals. The screening for the best zone of a crystal is currently being automated on PROXIMA 2 with 2D "grid" scans.

Already the structures of a number of important proteins have been determined with the X-rays on PROXIMA 2. These include proteins from viruses, bacteria, and even humans. These proteins have varied functions from catalysis and biosynthesis (enzymes) and cell signaling (signal transduction) to immunological responses (such as cytokines in asthma).

A closer look into the TSLP cytokine structure

Treating asthma, a closer look into the TSLP cytokine structure

The leading journal Nature Structural & Molecular Biology recently published new research results obtained on PROXIMA 2 that open the way for the development of new drugs to improve the treatment of allergic and chronic inflammatory diseases, such as asthma.

Using state-of-the-art synchrotron radiation facilities at SOLEIL in France (PROXIMA 2) and PETRA3 in Germany (P13), researchers from Ghent University have now determined crystal structures of the protein assembly mediated by TSLP cytokine, a protein regulating the action and function of other cells. This protein assembly resides at the surface of epithelial cells and serves to initiate and propagate inflammation. The structures reveal details at high resolution of how TSLP establishes extensive interfaces with its two co-receptors, TSLPR and interleukin-7 receptor, to organize receptor-receptor contacts poised for intracellular signaling.

A key experimental implementation that led to the structure determination of the complex was the use of micro-focused X-rays at the beamlines at SOLEIL and PETRA3. In addition, the study reports results on a modified form of TSLP that may offer a promising starting point to fight against such allergic diseases.

What is SOLEIL?

Near Paris, SOLEIL is a source of light endowed with extraordinary and important properties for the (great brilliance: 10,000 times brighter than sunlight), a wide spectral "white" source range ranging from infrared (1eV) to hard X-rays (50 keV), polarization (linear, circular, etc.), and pulsed light. It provides new perspectives in the study of matter with a resolution down to millionths of meters and sensitivity to all types of materials.

SOLEIL covers fundamental research needs in physics, chemistry, material sciences, life sciences (notably in the crystallography of biological macromolecules), earth sciences, and atmospheric sciences. It offers the use of a wide range of spectroscopic methods from infrared to X-rays, and structural methods in X-diffraction and diffusion.

In applied research, SOLEIL is applied in very different fields such as pharmacy, medicine, chemistry, petrochemistry, environment, nuclear energy, and the automobile industry, as well as nanotechnologies, micromechanics and microelectronics, and more.

Explore further: Tiny crystals to boost solar

More information: "Structural basis of the proinflammatory signaling complex mediated by TSLP," Kenneth Verstraete, Loes van Schie, Laurens Vyncke, Yehudi Bloch, Jan Tavernier, Ewald Pauwels, Frank Peelman, Savvas N Savvides. Nature Structural & Molecular Biology (2014) DOI: 10.1038/nsmb.2794

add to favorites email to friend print save as pdf

Related Stories

Tiny crystals to boost solar

Apr 02, 2014

A new approach to studying solar panel absorber materials has been developed by researchers in France, Acta Cryst. (2014). B70, 390. The technique could accelerate the development of non-toxic and readil ...

Data-mining for crystal 'gold' at SLAC's X-ray laser

Mar 17, 2014

A new tool for analyzing mountains of data from SLAC's Linac Coherent Lightsource (LCLS) X-ray laser can produce high-quality images of important proteins using fewer samples. Scientists hope to use it to ...

Recommended for you

Researchers capture picture of microRNA in action

17 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

19 hours ago

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

22 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

22 hours ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.