For cells, internal stress leads to unique shapes

April 16, 2014 by Jessica Stoller-Conrad
Caltech researchers studied the supportive microtubule arrangement in the tissue of pavement cells from the first leaves -- or cotyledons -- of a young Arabidopsis thaliana plant (pictured). By fluorescently marking the cells' microtubules (yellow, top surface of cell; purple, bottom surface of cell), the researchers could image the cell's structural arrangement -- and watch how this arrangement changed over time. They could also watch the microtubule modifications that occurred due to changes in the mechanical forces experienced by the cells. The unusual shape of the pavement cell represents a state of balance -- an individual cell's tug-of-war to maintain structural integrity while also dynamically responding to the pushes and pulls of mechanical stress. Credit: Arun Sampathkumar et. al/Caltech

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these cells individually take on their own unique forms, Caltech biologist Elliot Meyerowitz, postdoctoral scholar Arun Sampathkumar, and colleagues sought to pinpoint the shape-controlling factors in pavement cells, which are puzzle-piece-shaped epithelial cells found on the leaves of flowering plants. They found that these unusual shapes were the cell's response to mechanical stress on the microtubule cytoskeleton—protein tubes that act as a scaffolding inside the cells. These microtubules guide oriented deposition of cell-wall components, thus providing structural support.

The researchers studied this supportive arrangement in the tissue of pavement from the first leaves—or cotyledons—of a young Arabidopsis thaliana plant (right). By fluorescently marking the cells' microtubules (yellow, top surface of cell; purple, bottom surface of cell), the researchers could image the cell's structural arrangement—and watch how this arrangement changed over time. They could also watch the microtubule modifications that occurred due to changes in the mechanical forces experienced by the cells.

Microtubules strengthen a cell's structure by lining up in the direction of stress or pressure experienced by the cell and guiding the deposition of new cell-wall material, providing a supportive scaffold for the cell's shape. However, Meyerowitz and colleagues found that this internal stress is also influenced by the cell's shape. The result is a feedback loop: the cell's shape influences the microtubule arrangement; this arrangement, in turn, affects the cell's shape, which modulates the microtubules, and so on. Therefore, the unusual shape of the pavement cell represents a state of balance—an individual cell's tug-of-war to maintain structural integrity while also dynamically responding to the pushes and pulls of .

The results of the study were published in the journal eLife on April 16. Elliot Meyerowitz is George W. Beadle Professor of Biology and an investigator with the Howard Hughes Medical Institute.

Explore further: Cell biology: new insights into the life of microtubules

More information: elife.elifesciences.org/lookup/doi/10.7554/elife.01967

Related Stories

Cell biology: new insights into the life of microtubules

July 2, 2012

Every second, around 25 million cell divisions take place in our bodies. This process is driven by microtubule filaments which continually grow and shrink. A new study shows how so-called motor proteins in the cytosol can ...

Plant cell architecture: Growth toward a light source

November 7, 2013

Inside every plant cell, a cytoskeleton provides an interior scaffolding to direct construction of the cell's walls, and thus the growth of the organism as a whole. Environmental and hormonal signals that modulate cell growth ...

Experiments show hypothesis of microtubule steering accurate

January 23, 2014

Tiny protein motors in cells can steer microtubules in the right direction through branching nerve cell structures, according to Penn State researchers who used laboratory experiments to test a model of how these cellular ...

Friction harnessed by proteins helps organize cell division

April 16, 2014

(Phys.org) —A football-shaped structure, known as the mitotic spindle, makes cell division possible for many living things. This piece of cellular architecture, responsible for dividing up genetic material, is in constant ...

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.