Making the most of carbon nanotube-liquid crystal combos

Apr 02, 2014
Making the most of carbon nanotube-liquid crystal combos

Dispersions of carbon nanotubes with liquid crystals have attracted much interest because they pave the way for creating new materials with added functionalities. Now, a study published in European Physical Journal E by Marina Yakemseva and colleagues at the Nanomaterials Research Institute in Ivanovo, Russia, focuses on the influence of temperature and nanotube concentration on the physical properties of such combined materials. These findings could have implications for optimising these combinations for non-display applications, such as sensors or externally stimulated switches, and novel materials that are responsive to electric, magnetic, mechanical or even optical fields.

The added functionalities of these compound materials are achieved by combining the self-organisation of a liquid crystal with the characteristics of nanotubes, which exhibit a major difference in electric and thermal conductivity between their long and short axis. In this study, the authors focused on the electro-optic and of ferroelectric liquid crystal-multiwall combinations.

Specifically, they studied the influence of temperature on the compound material's main physical properties, such as , spontaneous polarisation, response time, viscosity, and the strength and frequency of its dielectric relaxation. They found that all dispersions exhibit the expected temperature dependencies with regard to their .

They also investigated the dependence of physical characteristics on nanotube concentration, which is still the subject of several contradicting reports. For increasing nanotube concentration, they observed a decrease in tilt angle, but an increase in spontaneous polarisation. This phenomenon explains the enhancement of the so-called bilinear coupling coefficient between tilt angle and spontaneous polarisation. Despite the increase in polarisation, the electro-optic response times slow down, which suggests an increase in rotational viscosity along the tilt cone. This phenomenon also accounts for the observed decrease in dielectric relaxation frequency for increasing nanotube concentration.

Explore further: Nanotube composites increase the efficiency of next generation of solar cells

More information: M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann (2014), Dispersions of Multi-wall Carbon Nanotubes in Ferroelectric Liquid Crystals, European Physical Journal E 37: 7, DOI: 10.1140/epje/i2014-14007-4

add to favorites email to friend print save as pdf

Related Stories

Densest array of carbon nanotubes grown to date

Sep 20, 2013

Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density ...

Improvement in polymers for aviation

Feb 25, 2014

We live surrounded by polymers and today, rather than come up with new polymers, there is a tendency to modify them in order to obtain new applications. Carbon nanotubes have excellent mechanical properties, ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.