Biologists discover a key regulator in the pacemakers of our brain and heart

Apr 25, 2014
T-type channels in pond snails and other invertebrates are similar to those found in humans. Biologists have discovered how an outer shield over T-type channels change the electrochemical signaling of heart and brain cells. Understanding how these shields work will help researchers eventually develop a new class of drugs for treating epilepsy, cardiovascular disease and cancer. Although pond snails reach only seven cm in length, its simple neural network and physiology make it a popular model organism with neurobiologists. Credit: University of Waterloo

Biologists have discovered how an outer shield over T-type channels change the electrochemical signaling of heart and brain cells. Understanding how these shields work will help researchers eventually develop a new class of drugs for treating epilepsy, cardiovascular disease and cancer.

The study from the University of Waterloo is published in the Journal of Biological Chemistry today and is featured as the "Paper of the Week" for its significance.

The researchers discovered T-type channels in the , Lymnaea stagnalis, can shift from using calcium ions to using to generate the electrical signal because of an outer shield of amino acids called a turret situated above the channel's entrance.

Low voltage T-type channels generate tiny pulses of current at regular intervals by selectively passing positively charged cations across the cell's membrane through a gate-like channel. The channels are normally extremely selective, allowing just one sodium ion to pass for every 10,000 .

The resulting rhythmic signals produced by this transfer of cations are what support the synchronous contraction of our heart muscles and neuronal firing in parts of the brain, like the thalamus, which helps regulate our sleep-wake cycle, or circadian rhythm.

In addition to their published findings, the researchers also found the shield-like turrets in pond snails restrict access of therapeutic drugs to the channel.

T-type channels in pond snails and other invertebrates are similar to those found in humans. Although pond snails reach only 7 cm in length, its simple neural network and physiology make it a popular model organism with neurobiologists.

Over-active T-type channels are linked to epilepsy, cardiac problems, neuropathic pain, as well as the spreading of several kinds of cancer. Drugs that could quench out-of-control T-type channel activity are unable to bind to the channels themselves.

"We wanted to understand the molecular structures of T-type channels," said Spafford. "How they pass ionic currents to generate electrical activity, and to identify drug binding sites, and the drugs which may block these channels to treat neurological disease or heart complications."

The group is currently investigating how dismantling this extracellular turret will improve drug access and binding in T-type channels.

Explore further: How living cells solved a needle in a haystack problem to produce electrical signals

More information: Paper www.jbc.org/content/289/17/11952

add to favorites email to friend print save as pdf

Related Stories

New operating principle of potassium channels discovered

Jan 28, 2014

Neurons transmit information with the help of special channels that allow the passage of potassium ions. Defective potassium channels play a role in epilepsy and depression. The scientists working with Prof. ...

Scientists identify a key to body's use of free calcium

Jan 23, 2014

Scientists at Johns Hopkins report they have figured out a key step in how "free" calcium—the kind not contained in bones—is managed in the body, a finding that could aid in the development of new treatments for a variety ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0