Beneficial organisms react differently to parasite drug

April 14, 2014

The substance ivermectin has been used for more than thirty years all over the world to combat parasites like roundworms, lice and mites in humans, livestock and pets. The active ingredient belongs to the chemical group of avermectins, which generally disrupt cell transport and thus attack pests. When ivermectin is excreted in the faeces of treated animals, at overly high doses it also harms dung-degrading beneficial insects like dung beetles and dung flies. This impairs the functioning of the ecosystem. In extreme cases the dung is not decomposed and the pasture is destroyed.

Sensitivity to ivermectin varies considerably

Since 2000 public regulators in many countries therefore mandate standardised safety tests for the use of avermectin derivatives. An international research team headed up by Wolf Blanckenhorn, an evolutionary biologist at the University of Zurich, has now shown that the safety tests used today are not able to sufficiently prevent environmental damage. Even closely related dung organisms react with varying degrees of sensitivity to the same veterinary pharmaceutical.

Blanckenhorn and his colleagues examined 23 species of sepsid flies that typically live in . "The individual species vary by a factor of 500 in their sensitivity to ivermectin", comments the . The standardised safety tests typically performed in toxicology in the laboratory today are based on single, arbitrarily selected dung organisms. "There is a considerable risk that the more sensitive species will continue to be harmed by and that important ecosystem functions will suffer long-term damage as a consequence", says Blanckenhorn. To prevent this, safety tests should be extended at least to include a representative selection of all dung-degrading organisms, if not the entire community. "Clearly, these tests would massively increase the costs of the authorisation process for new drugs, and investigators would have to possess specialised biological expertise", comments the biologist. For that reason a field test should be developed based on a genetic method of species identification, so-called DNA barcoding.

Evolutionary findings

With their study the authors further confirmed that in the course of evolution, as a consequence of pre-existing genetic modifications, first the sensitivity of moulting animals and later the non-sensitivity of particular species groups to avermectins has developed, long before any contact with the drug. Hence, their work also validates the still disputed molecular genetic classification of roundworms (nematodes) and arthropods as moulting animals, as only they are sensitive to avermectins.

The drug Ivermectin

Ivermectin was discovered in Japan in the late 1970s. Since then it has improved the quality of life of millions of people particularly in the tropics: ocular onchocerciasis, scabies and threadworms in the intestines can be successfully treated thanks to Ivermectin. Ivermectin is likewise used in animal husbandry across the globe.

Explore further: Scabies pill also works against resistant lice: study

More information: N. Puniamoorthy, M. A. Schäfer, J. Römbke, R. Meier, and W. U. Blanckenhorn. "Ivermectin sensitivity is an ancient trait affecting all ecdysozoa but shows phylogenetic clustering among sepsid flies." Evolutionary Applications, April 14, 2014. DOI: 10.1111/eva.12152

W. U. Blanckenhorn, N. Puniamoorthy, M. A. Schäfer, A. Scheffczy, and J. Römbke. "Standardized laboratory tests with 21 species of temperate and tropical sepsid flies confirm their suitability as bioassays of pharmaceutical residues (ivermectin) in cattle dung." Ecotoxicology and Environmental Safety. March 2013. DOI: 10.1016/j.ecoenv.2012.10.020

Related Stories

Exotic manure is sure to lure the dung connoisseur

April 11, 2012

Although the preference of dung beetles for specific types and conditions of dung has been given substantial attention, little has been done to investigate their preference for dung from exotic mammals found on game farms ...

European dung-fly females all aflutter for large males

April 13, 2012

European and North American black scavenger flies – also called dung flies as their larvae develop in the feces of vertebrates and thus break them down – belong to the same species. Nevertheless, they strongly differ ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.