Going batty for jumping DNA as a cause of species diversity

Apr 01, 2014

The vesper bats are the largest and best-known common family of bats, with more than 400 species spread across the globe, ranking second among mammals in species diversity.

Authors Ray et al., wanted to get at the root cause of this diversity by taking advantage of two vesper bat species whose genomes have recently been sequenced. They speculated that one cause of this might be jumping elements in the genome, called DNA transposons, which are more active and recent in the of this family than any other mammal. Why and how this DNA transposon activity has increased in these bats is unknown.

In their study, published in the advanced online edition of Molecular Biology and Evolution, they examined the patterns of DNA transposons activity in the two vesper bat species genomes. They found that the timing of expansion coincides with DNA transposon activity around 30 million years ago. DNA transposons, in turn, gave rise to the introduction of small RNAs, called microRNAs, or miRNAs, which can have a major effect on gene expression, and thus, evolutionary novelties. Says Ray, "Our results suggest that transposable elements have the potential to shift evolution into overdrive by rapidly introducing large numbers of small RNAs. Those small RNAs don't change the proteins that genes code for but instead impact how and when the genes are expressed, thereby allowing for rapid changes in the way organisms interact with their environment."

They further speculate that DNA transposons acted as a major evolutionary force in bat which coincided with a rapid and large shift in the Earth's climate from warm tropical conditions to a more temperate climate, called the Eocene-Oligocene transition, which occurred 33-34 million years ago.

Explore further: Scientists see a natural place for 'rewilded' plants in organic farming

Related Stories

Gene invaders are stymied by a cell's genome defense

Feb 14, 2013

Gene wars rage inside our cells, with invading DNA regularly threatening to subvert our human blueprint. Now, building on Nobel-Prize-winning findings, UC San Francisco researchers have discovered a molecular machine that ...

Recommended for you

First step towards global attack on potato blight

9 hours ago

European researchers and companies concerned with the potato disease phytophthora will work more closely with parties in other parts of the world. The first move was made during the biennial meeting of the ...

Bacteria study could have agricultural impact

11 hours ago

Wichita State University microbiology professor Mark Schneegurt and ornithology professor Chris Rogers have discovered that one of North America's most common migratory birds – the Dark-eyed Junco – carries ...

Sex chromosomes—why the Y genes matter

22 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

May 27, 2015

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.