Bacteria get new badge as planet's detoxifier

Apr 04, 2014
Microbial consumption dynamics of racemic amino acids (L-enantiomers: open symbol; D-enantiomers: filled symbol) following addition to soils. Credit: Gaosen Zhang

A study published recently in PLOS ONE authored by Dr. Henry Sun and his postdoctoral student Dr. Gaosen Zhang of Nevada based research institute DRI provides new evidence that Earth bacteria can do something that is quite unusual. Despite the fact that these bacteria are made of left-handed (L) amino acids, they are able to grow on right-handed (D) amino acids. This DRI study, funded by the NASA Astrobiology Institute and the NASA Exobiology Program, takes a closer look at what these implications mean for studying organisms on Earth and beyond.

"This finding is important because D- are slowly produced in soils through geochemical transformation of L amino acids. If they were allowed to accumulate, they would poison the environment for plants and animals. Our research shows that it is the that prevent D-amino acids from accumulating to toxic levels," explains Dr. Sun, who has studied microbial life in extreme environments in the Antarctic dry valleys, the Atacama Desert, and Death Valley.

Amino acids, the fundamental building blocks of life, come in two forms that, like our left and right hand, have identical parts. But the two forms are not the same from a three dimensional perspective. One is the mirror image of the other. Proteins and enzymes in Earth , without exception, all use L-forms. As expected, are very efficient at consuming L-amino acids from the medium. The researchers then presented the same bacteria D-amino acids. To their surprise, these life-incompatible forms too were rapidly consumed.

"We are not saying that the D-amino acids are assimilated as is. If incorporated into proteins, this amount of D-amino acids would kill the organisms," says Dr. Sun. "Rather, we think that a conversion occurred in the bacteria that turned the D-amino acids back into L-forms. All bacteria carry a specialized enzyme known as racemase which converts amino acids from one form to another," adds Dr. Sun.

This then raises another question: If all organisms on Earth synthesize L-amino acids, where do D-amino acids come from? Amino acids have the property of being able to spontaneously flip from one form to another, a process called racemization. Racemization is very slow. Most organisms do not live long enough for this process to kill the proteins and, ultimately, the organisms themselves. In soils, however, amino acids can be sequestered for thousands or even millions of years, allowing racemization to accumulate. Eventually, the concentrated D-amino acids are released into the environments – to the waiting bacteria, rather than poisoning plant and animal life.

Bacteriologists have known that bacteria contain racemases, but they have always assumed that the enzymes were invented for making D-amino acids. Unlike plants and animals, bacteria need a small amount of D-amino acids, not to incorporate into proteins, but to incorporate into cell walls to increase resistance and stability.

"But this cannot be the reason that bacteria invented the racemase. If D-amino acids are toxic, you have to invent a detoxification mechanism first before you go around and make more of the stuff. We think it is much more likely that the racemase originated initially as a detoxification enzyme. Only later, do bacteria, now immune to D-amino acid toxicity, start to make D-amino acids for constructive purposes. The D-amino acid-making function, therefore, is a secondary biological invention," says Dr. Sun.

"The implications of our study go beyond Earth. The steps that led to the invention of racemases on Earth would also exist on other planets, even if life uses D- instead of L-amino acids. This means that D-bacteria would also have to invent racemases and, as a result, would consume L-amino acids for nutrients. This creates a scenario that scientists charged with the duty of protecting Earth from foreign organisms haven't thought about," says Dr. Sun. "If D-bacteria ever visit us on Earth, they would compete with native bacteria for nutrients," he adds.

Explore further: Radioisotope studies show the continental crust formed 3 billion years ago

More information:

Related Stories

Could 'advanced' dinosaurs rule other planets?

Apr 11, 2012

New scientific research raises the possibility that advanced versions of T. rex and other dinosaurs — monstrous creatures with the intelligence and cunning of humans — may be the life forms that e ...

Researchers find new recipe for novel proteins

Dec 17, 2013

( —Yale researchers have discovered a targeted way to make proteins not generally found in nature by expanding the information encrypted in the genetic code.

Simplifying genetic codes to look back in time

Aug 24, 2012

(— Daisuke Kiga and co-workers at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology, together with researchers across Japan, have shown that simpler versions of the ...

Recommended for you

ESA image: Northwest Sardinia

Jul 03, 2015

This image over part of the Italian island of Sardinia comes from the very first acquisition by the Sentinel-2A satellite.

Experiments open window on landscape formation

Jul 02, 2015

University of Oregon geologists have seen ridges and valleys form in real time and—even though the work was a fast-forwarded operation done in a laboratory setting—they now have an idea of how climate ...

NASA image: Canadian wildfires continue

Jul 02, 2015

Canada is reeling from an early fire season this year as dozens of fires ravage at least three provinces of the country. All of the following reports are as of July 2, 2015.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.